K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

\(\sqrt{x^2-8x+16}=4-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-x\ge0\\x^2-8x+16=\left(4-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\x^2-8x+16=16-8x+x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\0x=0\left(luônđúng\right)\end{matrix}\right.\)

Vậy \(x\le4\) là nghiệm của pt

 

Ta có: \(\sqrt{x^2-8x+16}=4-x\)

\(\Leftrightarrow\left|x-4\right|=4-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=4-x\left(x\ge4\right)\\4-x=4-x\left(x< 4\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-4-4+x=0\\x< 4\end{matrix}\right.\)

\(\Leftrightarrow x\le4\)

13 tháng 12 2020

a,b) Đk để biểu thức A xác định là x > 4

\(A=\frac{x\left(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\right)}{\sqrt{\left(x-4\right)^2}}\)

\(A=\frac{x\left(|\sqrt{x-4}+2|+|\sqrt{x-4}-2|\right)}{|x-4|}\)

\(A=\frac{x\left(\sqrt{x-4}+2+|\sqrt{x-4}-2|\right)}{x-4}\)

+) Nếu 4 < x < 8 thì \(\sqrt{x-4}-2< 0\)nên \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)

Do 4 < x < 8 nên 0 < x - 4 < 4 => A > 88

+) Nếu \(x\ge8\)thì \(\sqrt{x-4}-2\ge0\)nên :

\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}=2\sqrt{x-4}+\frac{8}{\sqrt{x-4}}\ge2\sqrt{16}=8\)

( Theo bđt Cô si )

- Dấu " = " xảy ra khi và chỉ khi \(2\sqrt{x-4}=\frac{8}{\sqrt{x-4}}\Leftrightarrow x-4=4\Leftrightarrow x=8\)

Vậy Min của A = 8 khi  x = 8

c) Xét 4 < x < 8 thì \(A=4+\frac{16}{x-4}\), ta thấy \(A\in Z\)khi và chỉ khi \(\frac{16}{x-4}\in Z\Leftrightarrow x-4\)là ước nguyên dương của 16

- Hay \(x-4\in\left\{1;2;4;16\right\}\Leftrightarrow x=\left\{5;6;8;12;20\right\}\)đối chiếu điều kiện => x = 5 hoặc x = 6

+) Xét \(x\ge8\)ta có : \(A=\frac{2x}{\sqrt{x-4}}\)

Đặt \(\sqrt{x-4}=m\Rightarrow\hept{\begin{cases}x=m^2+4\\m\ge2\end{cases}}\)khi đó ta có : \(A=\frac{2\left(m^2+4\right)}{m}=2m+\frac{8}{m}\)

\(\Rightarrow m\in\left\{2;4;8\right\}\Leftrightarrow x\in\left\{8;20;68\right\}\)

Vậy để A nhận giá trị nguyên thì \(x\in\left\{5;6;8;20;68\right\}\)

16 tháng 11 2021

Đề sai rồi bạn

2 tháng 10 2021

\(Q=\dfrac{\sqrt{x}+6}{\sqrt{x}-2}\left(đk:x\ge0,x\ne4\right)=\dfrac{\sqrt{x}-2}{\sqrt{x}-2}+\dfrac{8}{\sqrt{x}-2}=1+\dfrac{8}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Do \(x\ge0,x\ne4\)

\(\Rightarrow x\in\left\{0;1;9;16;36;100\right\}\)

2 tháng 10 2021

Đkxđ: x # 4

Q = 1 + 8/(sqrt(x) - 2)

Q nguyên --> sqrt(x) - 2 là ước của 8

Do sqrt(x) >=0 nên sqrt(x) - 2 >= -2

TH1: sqrt(x) - 2 = -2 <=> x = 0 (thỏa)

TH2: sqrt(x) - 2 = -1 <=> x = 1 (thỏa)

Th3: sqrt(x) - 2 = 1 <=> x = 9(thỏa)

TH4: sqrt(x) - 2 = 2<=> x = 16 (thỏa)

Th5: sqrt(x) - 2 = 4 <=> x = 36 (thỏa)

Th6: sqrt(x) - 2 = 8 <=> x = 100 (thỏa)

AH
Akai Haruma
Giáo viên
5 tháng 9 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

5 tháng 9 2023

vâng ạ

22 tháng 6 2023

`B=(x+sqrtx+5)/(sqrtx+1)=(sqrtx(sqrtx+1)+4)/(sqrtx+1)=sqrtx+4/(sqrtx+1)=[(sqrtx+1)+4/(sqrtx+1)]-1>=2\sqrt((sqrtx+1). 4/(sqrtx+1))-1=3`

Dấu "=" xảy ra `<=>x=1`

Vậy `B_(min)=3<=>x=1`

22 tháng 6 2023

sửa lại dòng đầu là + 4 không phải + 5

24 tháng 5 2021

\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}\) đk: \(x\ge0,x\ne1\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}:\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right]-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}:\dfrac{\left(x+1\right)-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\left(\sqrt{x}+1\right)\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)^2}-\left(\sqrt{x}+1\right)\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}+1-\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

b)Để P<4 \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}< 4\) \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-4< 0\) \(\Leftrightarrow\dfrac{\sqrt{x}+2-4\left(\sqrt{x}-1\right)}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\dfrac{6-3\sqrt{x}}{\sqrt{x}-1}< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-3\sqrt{x}>0\\\sqrt{x}-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}6-3\sqrt{x}< 0\\\sqrt{x}-1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 2\\\sqrt{x}< 1\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}< 1\\\sqrt{x}>2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0\le x< 1\\x>4\end{matrix}\right.\)

Vậy...

c)\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\) \(=1+\dfrac{3}{\sqrt{x}-1}\)

Để P nguyên khi \(\dfrac{3}{\sqrt{x}-1}\) nguyên

\(x\in Z\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\in I\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}-1\in Z\\\sqrt{x}-1\in I\end{matrix}\right.\)

Tại \(\sqrt{x}-1\in I\Rightarrow\dfrac{3}{\sqrt{x}-1}\notin Z\) (L)

Tại\(\sqrt{x}-1\in Z\) .Để \(\dfrac{3}{\sqrt{x}-1}\in Z\)

\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;-2;4\right\}\) mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{0;2;4\right\}\) \(\Leftrightarrow x\in\left\{0;4;16\right\}\) (tm)

 

24 tháng 5 2021

câu c là sao vậy ạ??