K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

Phương trình hoành độ giao điểm:

$x^2+2mx+1-3m=-2x+4\iff x^2+2x(m+1)-3-3m=0$.

$\Delta'=(m+1)^2+3+3m=(m+1)(m+4)$

Hai đồ thì cắt nhau tại hai điểm phân biệt $A,B$ khi và chỉ khi $\Delta'>0\iff (m+1)(m+4)>0(*)$.

Giả sử: $A(a;-2a+4);B(b;-2b+4),(AB)\equiv (d): y+2x-4=0$.

Theo $Viet$, ta có: $a+b=-2m-2;ab=-3-3m$.

Theo GT: $S_{OAB}=\frac{1}{2}.d(O,AB).AB(2)$.

Mà: $d(O;AB)=\frac{|-4|}{\sqrt{2^2+1^2}}=\frac{4}{\sqrt{5}}$.

$(2)\implies AB=\frac{2S_{OAB}}{d(O;AB)}=6\sqrt{10}$.

\iff AB^2=360\iff 5(a-b)^2=360\iff (a-b)^2=72\iff (a+b)^2-4ab=72$.

$\iff 4(m+1)^2+12(m+1)-72=0\iff m+1=3(n)...v...m+1=-6(n)(\text{ do (1) })$.

Vậy: $m=2...v...m=-7$ là hai giá trị cần tìm.

27 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(\frac{-x+m}{x+2}=\frac{1-2x}{2}\) với x khác -2

\(\frac{-x+m}{x+2}=\frac{1-2x}{2}\Leftrightarrow\frac{-2x+2m}{2\left(x+2\right)}=\frac{\left(1-2x\right)\left(x+2\right)}{2\left(x+2\right)}\Leftrightarrow-2x+2m=\left(1-2x\right)\left(x+2\right)\Leftrightarrow-2x+2m=x-2x^2+2-4x\Leftrightarrow2x^2+x+2m-2=0\)

để đt d cắt đồ thị hàm số tại 2 điểm pt thì pt trên có 2 nghiệm phân biệt khác -2

làm tương tự như câu dưới......

1 tháng 2 2017

sao ko giải tiêp luôn đi

21 tháng 4 2016

Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :

\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là 

\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)

Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là : 

\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)

Dễ thất điểm O không thuộc d nên ABO là một tam giác.

Tam giác ABO vuông tại O khi và chỉ khi :

\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)

Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)

Thay vào trên ta được :

\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)

Vậy \(m=-3\) hoặc \(m=-1\)

23 tháng 3 2017

18 tháng 2 2019

+ Đạo  hàm y’ = 3x2- 6mx= 3x( x- 2m)

 

Đồ thị hàm số có hai điểm cực trị khi và chỉ khi :m≠0.   (1)                             

+ Tọa độ các điểm cực trị của đồ thị hàm số là  A( 0 ; 3m3) ; B( 2m; -m3)   

Ta có:  O A → ( 0 ; 3 m 3 ) ⇒ O A = 3 m 3                 ( 2 )

Ta thấy A ∈ O y ⇒ O A ≡ O y ⇒ d ( B ; O A ) = d ( B ; O y ) = 2 m                 (3)

+ Từ (2) và (3) suy ra  S= ½. OA.d(B ; OA)=3m4.

Do đó: S ∆ O A B = 48 ⇔ 3 m 4 = 48 ⇔ m = ± 2  (thỏa mãn (1) ).

 

Chọn D.

9 tháng 4 2017

Chọn D

Đồ thị hàm số có hai điểm cực trị khi và chỉ khi

2m ≠ 0 ⇔ m ≠ 0 (1)

Khi đó, các điểm cực trị của đồ thị hàm số là

Ta có: O A ⇀ ( 0 ; 3 m 3 ) ⇒ O A = 3 m 3 (2)

Ta thấy A ∈ O y ⇒ O A ≡ O y

⇒ d ( B , O A ) = d ( B , O y ) = 2 m ( 3 )

Từ (2) và (3) suy ra

S ∆ O A B = 1 2 . O A . d ( B , O A ) = 3 m 4

Do đó: S ∆ O A B = 48 ⇔ m = ± 2  (thỏa mãn (1)

 

8 tháng 12 2017

Chọn D

Đồ thị hàm số có hai điểm cực trị khi và chỉ khi : 2m ≠ 0 ⇔ m ≠ 0 (1)

 

Khi đó, các điểm cực trị của đồ thị hàm số là

22 tháng 4 2018

14 tháng 3 2017

Đạo hàm y’ = 3x2 – 3m

 

Hàm số có 2 cực trị khi và chỉ khi : m> 0

Khi đó tọa độ 2 điểm cực trị của đồ thị hàm số là: 

 

M ( m ; - 2 m m + 2 ) N ( - m ;     2 m m + 2 )   ⇒ M N → = ( - 2 m ; 4 m m )

 

Phương trình đường thẳng MN: 2mx+ y-2=0

Ta có : 

S ∆ I A B = 1 2 I A . I B . sin   A I B ^ = 1 2 sin   A I B ^ ≤ 1 2

Dấu bằng xảy ra khi 

Chọn B.

3 tháng 3 2019

Phương pháp:

+) Tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.

+) Sử dụng công thức tính diện tích tam giác 

 

+) Sử dụng công thức tính độ dài  

+) Áp dụng định lí Vi-ét tìm m

Chọn C.