K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

Đáp án B

Ta có y ' = 3 x 2 + 3 3 a  

Hàm sổ có cực trị ⇔ y ' = 0  có 2 nghiệm phân biệt ⇔ a < 0 . 

Hàm s là hàm số lẻ nên đồ thị hàm số có tâm đối xứng là gốc tọa độ, do đó đưng thẳng nối cực đại và cực tiu của đồ thị hàm số luôn đi qua gốc tọa độ.

4 tháng 1 2020

Đáp án là A

4 tháng 12 2017

13 tháng 3 2017

Đáp án C

Phương trình có ba nghiệm phân biệt nếu  y c t < m < y c d ⇔ - 2 < m < 2

12 tháng 4 2019

Khi đó điểm cực đại của đồ thị hàm số là A(0;m) và tọa độ 2 điểm cực tiểu là

24 tháng 3 2019

Đáp án A

Ta có: 

Hàm số có 3 điểm cực trị khi m > –1

Ba điểm cực trị của đồ thị hàm số là ;

6 tháng 8 2018

Chọn C

30 tháng 10 2018

Đáp án A

Phương pháp giải:

Tìm tọa độ điểm cực trị của đồ thị hàm số trùng phương và tính diện tích tam giác

Lời giải: TXĐ : D = R

Ta có R

Phương trình 

Hàm số có 3 điểm cực trị ó (*) có 2 nghiệm phân biệt khác 

Khi đó 

Gọi ;  là ba điểm cực trị. Tam giác ABC cân tại A.

Trung điểm  H của BC là

 Diện tích tam giác ABC là  

Mà suy ra 

Vậy Smax = 1 Dấu bằng xảy ra khi và chỉ khi m = 0

17 tháng 7 2017

Đáp án là  A.

Ta có:  y , = 3 x 2 - 6 m x = 0 ⇔ x = 0 x = 2 m

Để đồ thị hàm số có 2 cực trị thì m ≢ 0  suy ra A(0; 4 m 8 ),B(2m;0)

YCBT, ta có  m = ± 1 2