\(\)x2 - x(y - 1) + y + 3 = 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Coi phương trình trên là pt bậc 2 ẩn x tham số y

Ta có : \(\Delta=\left(y-1\right)^2-4\left(y+3\right)\)

               \(=y^2-2y+1-4y-12\)

               \(=y^2-6y-11\)

Pt có nghiệm khi \(\Delta=y^2-6y-11\ge0\)        

                               \(\Leftrightarrow\orbr{\begin{cases}y\le3-2\sqrt{5}\\y\ge3+2\sqrt{5}\end{cases}}\)

Để pt ban đầu có nghiệm nguyên thì \(\Delta\)phải là số chính phương 

Đặt \(\Delta=k^2\left(k\inℕ\right)\)

\(\Leftrightarrow y^2-6y-11=k^2\)

\(\Leftrightarrow\left(y-3\right)^2-20=k^2\)

\(\Leftrightarrow\left(y-3\right)^2-k^2=20\)

\(\Leftrightarrow\left(y-3-k\right)\left(y-3+k\right)=20\)

Vì y là số nguyên , k là số tự nhiên nên y - 3 - k < y - 3 + k và 2 số này đều nguyên

Lập bảng ước của 20 ra tìm đc y -> thế vào pt ban đầu -> tìm đc x (Nếu x;y mà ko nguyên thì loại)

5 tháng 3 2017

x,y deu =12

5 tháng 3 2017

x,y=10

15 tháng 6 2019

Dễ thấy \(\left(2x-y+7\right)^{2012}\ge0;\left|x-3\right|^{2013}\ge0\Rightarrow\text{Vế trái}\ge0\) (1)

\(\text{Mà theo đề bài: VT(vế trái)}\le0\) (2) .\(\text{Kết hợp (1) và (2) suy ra VT = 0}\)

\(\text{Hay: }\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)

\(\text{Điều này xảy ra khi: }\hept{\begin{cases}x-3=0\\2x-y+7=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2x+7=2.3+7=13\end{cases}}\)

\(\text{Vậy...}\)