K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

\(y=\sqrt{x+\sqrt{x^2}-x+1}\)

\(y=\sqrt{\left|x\right|+1}\)

để y xđ   <=>\(\left|x\right|+1\ge0\)

\(\left|x\right|\ge0\)\(\Leftrightarrow\left|x\right|+1\ge0\left(\text{luôn đúng}\right)\)

Vậy y xác định với mọi x thuộc R 

30 tháng 9 2018

bạn ơi mình viết thiếu đúng là \(\sqrt{x^2-x+1}\)

2 tháng 9 2021

a)R

b)R

c)\(x\)\(\ne\)\(\pm\)\(1\)

d)\(x<1\)

c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x\le1\)

25 tháng 8 2017

Ta có : x^3 + y^3 = 152

(x+y)(x^2-xy+y^2)=152    (1)

Thay x^2-xy+y^2=19 vào (1) ta được:

(x+y).19=152

->x+y=8

Mà x-y=2 nên => x=5 và y=3

Vậy x=5:y=3

25 tháng 8 2017

đáp án đúng là :

\(X=5\)

\(Y=3\)

tk to nha

26 tháng 8 2021

Sửa b)`->` x nguyên để f(x) nguyên

a)TXĐ:`{(x>=0),(sqrtx-1 ne 0):}`

`<=>{(x>=0),(sqrtx ne 1):}`

`=>x>=0,x ne 1`

`b)f(x) in ZZ=>sqrtx+1 vdots sqrtx-1`

`=>sqrtx-1+2 vdots sqrtx-1`

`=>2 vdots sqrtx-1`

`=>sqrtx-1 in Ư(2)`

`=>sqrtx-1 in {+-1;2}`

`=>sqrtx in {0;2;3}`

`=>x in {0;4;9}`

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Để f(x) nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

a) Để biểu thức có nghĩa thì \(x\left(x-1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\)

b) Để biểu thức có nghĩa thì \(\left(x+1\right)\left(x+2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge0\\x+2\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-2\end{matrix}\right.\)

c) Để biểu thức có nghĩa thì \(\left(3-x\right)\left(4-x\right)\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4\ge0\\x-3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le3\end{matrix}\right.\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)