Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\sqrt{\left|x\right|-1}\) xác định
<=> \(\left|x\right|\ge1\)
<=> \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
b) Để \(\sqrt{-\left|x+5\right|}\) xác định
<=> \(-\left|x+5\right|\ge0\)
Mà \(\left|x+5\right|\ge0\left(\forall x\right)\)
<=> x + 5 = 0 <=> x = -5
c) Để \(\sqrt{\left|x-1\right|-3}\) xác định
<=> \(\left|x-1\right|\ge3\)
<=> \(\left[{}\begin{matrix}x-1\ge3< =>x\ge4\\x-1\le-3< =>x\le-2\end{matrix}\right.\)
`a)đk:|x|-1>=0`
`<=>|x|>=1`
`<=>` \(\left[ \begin{array}{l}x \ge 1\\x\le -1\end{array} \right.\)
`b)đk:-|x+5|>=0`
`<=>|x+5|<=0`
Mà `|x+5|>=0`
`<=>|x+5|=0`
`<=>x=-5`
`c)đk:|x-1|-3>=0`
`|x-1|>=3`
`<=>` \(\left[ \begin{array}{l}x-1 \ge 3\\x-1 \le -3\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x \ge 4\\x \le -2\end{array} \right.\)
Dùng liên hợp.
pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)
\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)
\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)
<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)
\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)
\(=3x-1\)
<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)
\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)
<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)
<=> \(x^2-3x+2=0\) phương trình bậc 2.
Em làm tiếp nhé!
a) Để biểu thức có nghĩa thì \(x\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\)
b) Để biểu thức có nghĩa thì \(\left(x+1\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge0\\x+2\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-2\end{matrix}\right.\)
c) Để biểu thức có nghĩa thì \(\left(3-x\right)\left(4-x\right)\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4\ge0\\x-3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le3\end{matrix}\right.\)