Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(B=\frac{\frac{x}{x+3}-\frac{9}{x^2+6x+9}}{\frac{3}{x+3}}=\frac{\frac{x}{x+3}-\frac{3^2}{x^2+2\cdot3\cdot x+3^2}}{\frac{3}{x+3}}\)
\(=\frac{\frac{x}{x+3}-\left(\frac{3}{x+3}\right)^2}{\frac{3}{x+3}}=1-\frac{3}{x+3}\)
a, Vậy điều kiện là \(x\ne3\)
c, \(B=\frac{1}{3}\Leftrightarrow1-\frac{3}{x+3}=\frac{1}{3}\)
\(\Rightarrow\frac{3}{x+3}=\frac{2}{3}\Leftrightarrow x=\frac{3}{2}\)
Ta có:
\(x^2+2x=x\left(x+2\right)\)
\(x^2+6x+8=x^2+2x+4x+8=x\left(x+2\right)+4\left(x+2\right)=\left(x+2\right)\left(x+4\right)\)
\(x^2+10x+24=x^2+4x+6x+24=x\left(x+4\right)+6\left(x+4\right)=\left(x+4\right)\left(x+6\right)\)
\(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)
Phương trình trở thành:
\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}=3\)
\(\Leftrightarrow2\left(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+...+\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=3\)
\(\Leftrightarrow2\left(\dfrac{1}{x}-\dfrac{1}{x+8}\right)=3\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{3}{2}\Leftrightarrow3x\left(x+8\right)=16\Leftrightarrow x^2+8x=\dfrac{16}{3}\Leftrightarrow x=0,6188021535\)
Trần Ngọc Thảo hỏi nhiều vậy bạn, phải biết vận dụng chứ
Phân thức 1 xác định \(\Leftrightarrow x^2+3x\ne0\Leftrightarrow x\left(x+3\right)\ne0\Leftrightarrow\left[{}\begin{matrix}x\ne0\\x\ne-3\end{matrix}\right.\)
Phân thức 2 xác định \(\Leftrightarrow x^2-3x+2\ne0\Leftrightarrow x^2-x-2x+2\ne0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne1\\x\ne2\end{matrix}\right.\)
Phân thức 1 xác định \(\Leftrightarrow5x+2\ne0\Leftrightarrow x\ne\dfrac{-2}{5}\)
Phân thức 2 xác định \(\Leftrightarrow x^2-6x+9\ne0\Leftrightarrow\left(x-3\right)^2\Leftrightarrow0\Leftrightarrow x-3\ne0\Leftrightarrow x\ne3\)