K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2023

3n + 5 ⋮ n (n \(\ne\) -5)

3n + 5 ⋮ n

        5 ⋮ n

   n \(\in\) Ư(5) = {-5; -1; 1; 5}

  Vì n \(\in\) N nên n \(\in\) {1; 5}

 

 

10 tháng 10 2023

b, 18 - 5n ⋮ n (n \(\ne\) 0)

           18 ⋮ n

    n \(\in\) Ư(18) = { -18; -9; -6; -3; -2; -1; 1; 2; 3; 6; 9; 18}

    Vì n \(\in\) {1; 2; 3; 6; 9; 18}

 

10 tháng 10 2023

a, 3n + 5 ⋮ n (n \(\ne\) 0)

            5 ⋮ n

   n \(\in\) { -5; -1; 1; 5}

   vì n \(\in\) { 1; 5}

 

            

10 tháng 10 2023

b,    18 - 5n \(⋮\) 5

       18 không chia hết cho 5; 5n ⋮ 5

Vậy 18 - 5n không chia hết cho 5 với mọi giá trị n.

       Vậy n \(\in\) \(\varnothing\)

 

17 tháng 11 2015

a)1

b)1

c)1

20 tháng 10 2019

a) 6 chia hết cho n-2

n-2 

Ta thấy n phải là 1 số chẵn vì vậy để \(6⋮2\)ta có:

n-2 phải là các tập hợi n\(\in\){2,4,,6}

Vậy n là tập hợp các số chẵn n={0,2,4,6,8}

20 tháng 10 2019

a) Để 6 \(⋮\)n - 2

\(\Leftrightarrow\)n - 2 \(\in\)Ư( 6 ) = { \(\pm\)1 ; \(\pm\)6 }

Ta lập bảng :

n - 21- 16- 6
n318- 4

Vậy : n \(\in\){ - 4 ; 1 ; 3 ; 8 }

21 tháng 1 2020

a) Ta có : n-2017\(⋮\)n-2018

\(\Rightarrow\)n-2018+1\(⋮\)n-2018

Vì n-2018\(⋮\)n-2018 nên 1 \(⋮\)n-2018

\(\Rightarrow n-2018\inƯ\left(1\right)=\left\{\pm1\right\}\)

+) n-2018=-1

    n=2017  (thỏa mãn)

+) n-2018=1

     n=2019  (thỏa mãn)

Vậy n\(\in\){2017;2019}

21 tháng 1 2020

c) Ta có : 2n-3\(⋮\)2n-5

\(\Rightarrow\)2n-5+2\(⋮\)2n-5

Vì 2n-5\(⋮\)2n-5 nên 2\(⋮\)2n-5

\(\Rightarrow2n-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

+) 2n-5=-1\(\Rightarrow\)2n=4\(\Rightarrow\)n=2  (thỏa mãn)

+) 2n-5=1\(\Rightarrow\)2n=6\(\Rightarrow\)n=3  (thỏa mãn)

+) 2n-5=-2\(\Rightarrow\)2n=3\(\Rightarrow\)n=1,5  (không thỏa mãn)

+) 2n-5=2\(\Rightarrow\)2n=7\(\Rightarrow\)n=3,5  (không thỏa mãn)

Vậy n\(\in\){2;3}

13 tháng 10 2016

Ta có:

A,3n +7 chia hết cho n ( đề bài)

Lại có: 3n  chia hết cho n vì n nhân bất cứ số nào cũng chia hết cho n.(1)

Suy ra 7 chia hết cho n. Mà 7 chỉ chia hết cho 7 nên 3n+7 chia hết cho 7. (2)

Vậy ta có 3n +7 chia hết cho n.

Ta có:

B,4n chia hết cho 2n vì bất cứ số nào chia hết cho 4 cũng chia hết cho 2.

Mà 9 không chia hết cho 2n nên không tồn tại số tự nhiên n.

Phần c làm tương tự như phần b.

Phần d tớ chịu

14 tháng 10 2016

C, 6n chia hết cho 3n vì bất cứ số nào chia hết cho 6 cũng chia hết cho 3.

Mà 11 không chia hết cho 3n nên không tồn tại số tự nhiên n

D, Mình không biết trình bày chỉ biết kết quả là 2 thui mong bạn thông cảm!

Mình trả lời hết rồi nhé!

10 tháng 10 2023

a) 2n + 11 chia hết cho n + 3 

⇒ 2n + 6 + 5 chia hết cho n + 3

⇒ 2(n + 3) + 5 chia hết cho n + 3

⇒ 5 chia hết cho n + 3

⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5} 

⇒ n ∈ {-2; -4; 2; -8}

Mà n là số tự nhiên

⇒ n ∈ {2} 

b) n + 5 chia hết cho n - 1

⇒ n - 1 + 6 chia hết cho n - 1 

⇒ 6 chia hết cho n - 1 

⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}

⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5} 

Mà n là số tự nhiên

⇒ n ∈ {2; 0; 3; 4; 7} 

c) 3n + 10 chia hết cho n + 2

⇒ 3n + 6 + 4 chia hết cho n + 2

⇒ 3(n + 2) + 4 chia hết cho n + 2 

⇒ 4 chia hết cho n + 2

⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4} 

⇒ n ∈ {-1; -3; 0; -4; 2; -6}

Mà n là số tự nhiên

⇒ n ∈ {0; 2}

d) 2n + 7 chia hết cho 2n + 1 

⇒ 2n + 1 + 6 chia hết cho 2n + 1

⇒ 6 chia hết cho 2n + 1

⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6} 

⇒ n ∈ {0; -1; 1/2; -3/2; 1; -2; 5/2; -7/2}

Mà n là số tự nhiên

⇒ n ∈ {0; 1}