Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
Giải:
Ta có:
\(n+1⋮2n-3\)
\(\Rightarrow2\left(n+1\right)⋮2n-3\)
\(\Rightarrow2n+2⋮2n-3\)
\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)
\(\Rightarrow5⋮2n-3\)
\(\Rightarrow2n-3\in\left\{1;5\right\}\)
+) \(2n-3=1\Rightarrow n=2\)
+) \(2n-3=5\Rightarrow n=4\)
Vậy \(n\in\left\{2;4\right\}\)
*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.
1)Ta có:[a,b].(a,b)=a.b
120.(a,b)=2400
(a,b)=20
Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))
\(\Rightarrow20k\cdot20m=2400\)
\(400\cdot k\cdot m=2400\)
\(k\cdot m=6\)
Mà ƯCLN(k,m)=1,\(k,m\in N\)
Ta có bảng giá trị sau:
k | 2 | 3 | 1 | 6 |
m | 3 | 2 | 6 | 1 |
a | 40 | 60 | 20 | 120 |
b | 60 | 40 | 120 | 20 |
Mà a,b là SNT\(\Rightarrow\)a,b không tìm được
2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15
Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)
Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)
Mà \(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\)
TH1 : n >=-1 => n+2>=1 >0
\(\Rightarrow A\ge1-\dfrac{5}{1}=-4\)
Dấu = khi n=-1
TH2: n<= -3 => n+2<=-1 <0
\(\Rightarrow A\le1-\dfrac{5}{-1}=6\)
Dấu = xảy ra khi n=-3
Cảm ơn vì bn đã giúp. Nhưng bn có thể giải chi tiết cho mik đc ko ạ?
Bài 2:
\(\Leftrightarrow n+1\in\left\{1;2;4\right\}\)
hay \(n\in\left\{0;1;3\right\}\)
Làm ơn nhanh được không ạ? Tớ cần gấp, mai phải nộp cho cô rồi mà h chưa làm xong!
Đề câu a thiếu bạn ơi~
Cmr: Với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau
Giải :
Gọi d là một ước chung của \(2n+1\)và \(\frac{n\left(n+1\right)}{2}\). Ta có :
\(2n+1⋮d;\frac{n\left(n+1\right)}{2}⋮d\)
\(\Rightarrow n\left(2n+1\right)⋮d;\frac{4.n\left(n+1\right)}{2}⋮d\)
\(\Rightarrow2n^2+1-2n\left(n+1\right)⋮d\)
\(\Rightarrow2n^2+n-2n^2+n^2\)
\(\Rightarrow n⋮d\)
Vì \(n⋮d\Rightarrow2n⋮d\) mà \(2n+1⋮d\) nên \(1⋮d\)
\(\Rightarrow d=1\)
Vậy với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau.
\(\frac{n-3}{n+2}\inℤ\Leftrightarrow n-3⋮n+2\)
=> n + 2 - 5 ⋮ n + 2
n + 2 ⋮ n + 2
=> 5 ⋮ n + 2
=> n + 2 thuộc {-1; 5; 1; -5}
=> n thuộc {-3; 3; -1; -7}
vậy_