Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) \(\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
c) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(vôlí\right)\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
a) \(\sqrt{x}>1\Leftrightarrow x>1\)
b) \(\sqrt{x}< 3\Leftrightarrow x< 9\)
Vì x không âm nên x={0;1;2;3;4;5;6;7;8}
a)\(\sqrt{x}>1\Leftrightarrow\sqrt{x^2}>1^2\Leftrightarrow x>1\)
b)\(\sqrt{x}< 3\Leftrightarrow\sqrt{x^2}< 3^2\Leftrightarrow x< 9\)
Lưu ý: Vì x không âm (x ≥ 0) nên các căn thức trong bài đều xác định.
a) √ x = 15
Vì x ≥ 0 nên bình phương hai vế ta được:
x = 15 2 ⇔ x = 225
Vậy x = 225
b) 2 √ x = 14 ⇔ √ x = 7
Vì x ≥ 0 nên bình phương hai vế ta được:
x = 7 2 ⇔ x = 49 V ậ y x = 49
c) √x < √2
Vì x ≥ 0 nên bình phương hai vế ta được: x < 2
Vậy 0 ≤ x < 2
d) 2 x < 4
Vì x ≥ 0 nên bình phương hai vế ta được:
2x < 16 ⇔ x < 8
Vậy 0 ≤ x < 8
\(2\sqrt{x}=14\Rightarrow\sqrt{x}=7\) \(\Rightarrow x=49\)
\(\sqrt{x}< \sqrt{2}\Rightarrow x< 2\) Mà x không âm \(\Rightarrow x\in\left(0;1\right)\)
\(\sqrt{2x}< 4\Rightarrow2x< 16\) \(\Rightarrow x< 8\) mà x không âm \(\Rightarrow x\in\left(0;1;2;3;4;5;6;7\right)\)
3 = √9, nên √x < 3 có nghĩa là √x < √9
Vì x ≥ 0 nên √x < √9 ⇔ x < 9. Vậy x < 9
1 = √1, nên √x > 1 có nghĩa là √x > √1
Vì x ≥ 0 nên √x > √1 ⇔ x > 1. Vậy x > 1
a)\(\sqrt{x}>2\Leftrightarrow\sqrt{x^2}>2^2\Leftrightarrow x>4\)
\(\sqrt{x}< 1\Leftrightarrow\sqrt{x^2}< 1^2\Leftrightarrow x< 1\)