K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau

\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)

Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)

Không thỏa mãn điều kiện vì 12 không chia hết cho 5

Ta có : \(x=8x',y=8y'\)(như trên)

Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)

Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)

Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)

11 tháng 8 2021

á đù được của ló đấy

18 tháng 12 2020

Ta có: \(\left(2x-3\right)\left(y+8\right)=10\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3\inƯ\left(10\right)\\y+8\inƯ\left(10\right)\end{matrix}\right.\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}2x-3=1\\y+8=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\left(nhận\right)\\y=2\left(nhận\right)\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}2x-3=-1\\y+8=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\y=-18\left(loại\right)\end{matrix}\right.\)

Trường hợp 3:

\(\left\{{}\begin{matrix}2x-3=10\\y+8=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=13\\y=-7\left(loại\right)\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}2x-3=-10\\y+8=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-7\\y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{7}{2}\left(loại\right)\\y=7\left(loại\right)\end{matrix}\right.\)

Trường hợp 5: 

\(\left\{{}\begin{matrix}2x-3=2\\y+8=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\left(loại\right)\\y=-3\left(loại\right)\end{matrix}\right.\)

Trường hợp 6: 

\(\left\{{}\begin{matrix}2x-3=-2\\y+8=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\y=-13\left(loại\right)\end{matrix}\right.\)

Trường hợp 7: 

\(\left\{{}\begin{matrix}2x-3=5\\y+8=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\y=-6\left(loại\right)\end{matrix}\right.\)

Trường hợp 8: 

\(\left\{{}\begin{matrix}2x-3=-5\\y+8=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\y=-10\left(loại\right)\end{matrix}\right.\)

Vậy: (x,y)=(2;2)

14 tháng 3 2020

a) x+15 là bội của x+3

\(\Rightarrow\)x+15\(⋮\)x+3

\(\Rightarrow\)x+3+12\(⋮\)x+3

x+3\(⋮\)x+3

\(\Rightarrow\)12\(⋮\)x+3

\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)

Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}

b) (x+1).(y-2)=3

\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}

Có :

x+11-13-3
x0-22-4
y+23-31-1
y1-5-1-3

Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}

Câu c tương tự câu b

14 tháng 3 2020

g) Ta có : (x,y)=5

\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)

Mà x+y=12

\(\Rightarrow\)5m+5n=12

\(\Rightarrow\)5(m+n)=12

\(\Rightarrow\)m+n=\(\frac{12}{5}\)

Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...

22 tháng 11 2023

x+y=8

x*y=15

Do đó: x,y là các nghiệm của phương trình sau đây:

\(a^2-8a+15=0\)

=>\(a^2-3a-5a+15=0\)

=>\(a\left(a-3\right)-5\left(a-3\right)=0\)

=>(a-3)(a-5)=0

=>\(\left[{}\begin{matrix}a-3=0\\a-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=5\end{matrix}\right.\)

Vậy: (x,y)=(3;5) hoặc (x,y)=(5;3)

Bài 1:

a: Ta có: \(48751-\left(10425+y\right)=3828:12\)

\(\Leftrightarrow y+10425=48751-319=48432\)

hay y=38007

b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)

\(\Leftrightarrow2367-y=1222\)

hay y=1145

Bài 2: 

Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)

\(\Leftrightarrow288:\left(x-3\right)^2=2\)

\(\Leftrightarrow\left(x-3\right)^2=144\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)

\(a,12⋮x-1\)

\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Ta lập bảng xét giá trị 

x - 1             1          -1            2         -2           3          -3          4          -4          12            -12

x                   2            0            3        -1          4          -2           5         -3           13            -11

\(c,x+15⋮x+3\)

\(x+3+12⋮x+3\)

\(12⋮x+3\)

Tự lập bảng , lười ~~~

\(d,\left(x+1\right)\left(y-1\right)=3\)

Ta lập bảng 

x+11-13-3
y-13-31-1
x202-4
y4-220

i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )

\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)

Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC ) 

:>> Hc tốt 

19 tháng 11 2021

bạn cho như thế này lm sao giải hết cho bn đc 

23 tháng 3 2020

a)Vì ƯCLN(x;y) = 5

=> \(\hept{\begin{cases}x=5k\\y=5t\end{cases}\left(k;t\inℕ^∗\right)}\)

Lại có : x + y = 12 

<=> 5k + 5t = 12

=> 5(k + t) = 12

=> k + t = 2,4 

mà \(k;t\inℕ^∗\)

=> \(k;t\in\varnothing\)

=> x ; y \(\in\varnothing\)

b) Vì ƯCLN(x;y) = 8

=> \(\hept{\begin{cases}x=8k\\y=8t\end{cases}\left(k;t\inℕ^∗\right)}\)

Lại có x + y = 32

<=> 8k + 8t = 32

=> k + t = 4 

mà \(k;t\inℕ^∗\)

Lập bảng xét các trường hợp : 

k132
t312
x82416 (loại)
y24816 (loại)


Vậy các cặp (x;y) thỏa mãn là : (24 ; 8); (8;24)