K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

Câu 1 .

\(\left|x^2+|x+1|\right|=x^2+5\)

\(Đkxđ:x^2+5\ge0\)

\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 ) 

\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha ) 

Vậy : x = 4 hoặc x = -6 

24 tháng 8 2016

1/ a/ x = 1/2, y = -1

b/ x = -1/2 ; y = 1

20 tháng 9 2018

a) Ta có : x + 2xy + y = 7

           =>2x + 4xy + 2y = 14

           =>2x(1+2y) + 2y + 1 = 14 + 1

           =>2x(2y+1) + 2y + 1 = 15

           =>(2y+1).(2x+1) = 15

Giả sử x > y=> 2y+1 > 2x +1

Lập bảng là gia thôi!

b)Ta có : 2^x + 2^y =1025

TH1: 2^x lẻ, 2^y chẵn

=> 2^x lẻ=>2^x=1 => x= 1

Khi đó : 2^x + 2^y = 1025

          =>1 +2^y = 1025

          => 2^y = 1024

          => 2^y = 2^10

          => y = 10

Vậy x = 1, y = 10

TH2: làm tương tự xét: 2^x chẵn , 2^y lẻ  thì dc x= 10 , y= 1

20 tháng 9 2018

subin lp mấy?

28 tháng 9 2023

\(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\left(1\right)\)

Vì \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2024}\ge0\forall x\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(M=21.2^2.\dfrac{1}{2}+4.2.\left(\dfrac{1}{2}\right)^2=21.2+4.2.\dfrac{1}{4}=42+2=44\)

28 tháng 9 2023

Ta có: \(\left(x-2\right)^4\ge0\forall x\)

           \(\left(2y-1\right)^{2024}\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\forall x;y\)

Mặt khác: \(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\)

nên \(\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^4=0\\\left(2y-1\right)^{2024}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Thay \(x=2\) và \(y=\dfrac{1}{2}\) vào \(M\), ta được:

\(M=21\cdot2^2\cdot\dfrac{1}{2}+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)

\(=42+2\)

\(=44\)

Vậy \(M=44\) tại \(x=2;y=\dfrac{1}{2}\).

#\(Toru\)

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11