Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
Vì \(x^2+3^y=35\)nên \(3^y< 35\)
Vì \(3^3=27\),\(3^4=108>35\)
\(\Rightarrow y\in(1;2;3)\)
Nếu y=1 thì\(x^2+3^1=35\Rightarrow x^2=35-3=32\)
Nhưng không có bình phương nào bằng 32 \(\Rightarrow\)\(y\ne1\)
Nếu y=2 thì\(x^2+3^2=35\Rightarrow x^2=35-9=26\)
Nhưng không có bình phương nào bằng 26 \(\Rightarrow y\ne2\)
Nếu y=3 thì\(x^2+3^3=35\Rightarrow x^2=35-27=8\)
Nhưng không có bình phương nào bằng 8 \(\Rightarrow y\ne3\)
Vậy không có x,y để thỏa mãn điều kiện của đề bài.
Nếu x = 0 thì: \(2^0+3=y^2\Rightarrow y^2=4\Rightarrow y=\pm2\)
Nếu x = 1 thì: \(2^1+3=y^2\Rightarrow y^2=5\) (không thỏa mãn y là số nguyên)
Nếu \(x\ge2\) thì: \(2^x⋮4\Rightarrow2^x+3\) chia 4 dư 3
Mà không có số chính phương nào chia 4 dư 3
\(\Rightarrow y^2\)chia cho 4 không dư 3 (trái với đề bài \(2^x+3=y^2\) )
Vậy x = 0 và y = 2 hoặc x = 0 và y = -2
Chúc bạn học tốt.
Vì tổng là số lẻ nên cả 3 số hạng đều lẻ hoặc 1 lẻ, 1 chẵn
TH1: Cả 3 số hạng đều lẻ
=> x-y lẻ => x và y khác tính chẵn lẻ
y-z lẻ => y và z khác tính chẵn lẻ
x-z lẻ => z và x khác tính chẵn lẻ
=> x,y,z khác tính chẵn lẻ với nhau
Trong khi đó chỉ có 2 loại là chẵn và lẻ, không có loại thứ 3
TH2: 2 chẵn, 1 lẻ
Giả sử (x-y)3 chẵn, (y-z)3 chẵn; 5|z-x| lẻ
=> x-y chẵn => x;y cùng tính chẵn lẻ (1)
y-z chẵn => y;z cùng tính chẵn lẻ (2)
x-z lẻ => x;z cùng tính chẵn lẻ (3)
Từ (1)(2)(3) => x,z cùng tính chẵn lẻ, mâu thuẫn với (3)
TH (x-y)3 lẻ và (y-z)2 lẻ cho kết quả tương tự
Vậy không có x,y,z nguyên thỏa mãn bài toán
\(Vì tổng là số lẻ nên cả 3 số hạng đều lẻ hoặc 1 lẻ, 1 chẵn TH1: Cả 3 số hạng đều lẻ => x-y lẻ => x và y khác tính chẵn lẻ y-z lẻ => y và z khác tính chẵn lẻ x-z lẻ => z và x khác tính chẵn lẻ => x,y,z khác tính chẵn lẻ với nhau Trong khi đó chỉ có 2 loại là chẵn và lẻ, không có loại thứ 3 TH2: 2 chẵn, 1 lẻ Giả sử (x-y)3 chẵn, (y-z)3 chẵn; 5|z-x| lẻ => x-y chẵn => x;y cùng tính chẵn lẻ (1) y-z chẵn => y;z cùng tính chẵn lẻ (2) x-z lẻ => x;z cùng tính chẵn lẻ (3) Từ (1)(2)(3) => x,z cùng tính chẵn lẻ, mâu thuẫn với (3) TH (x-y)3 lẻ và (y-z)2 lẻ cho kết quả tương tự Vậy không có x,y,z nguyên thỏa mãn bài toán\)
x = 0
y = 6
x=0
y=6