Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm số tự nhiên x để A=x14+x13+1 là số nguyên tố
b) Chứng minh x4-10x2+27 không là số chính phương
a)
Xét x=0 => A = 1 không là số nguyên tố
Xét x=1 => A= 3 là số nguyên tố (chọn)
Xét x>1
Có A = x14+ x13 + 1 = x14 - x2 + x13 - x + x2 + x + 1
A = x2(x12-1) + x(x12-1) + x2+x+1
A = (x2+x)(x3*4-1) + x2 + x + 1
Có x3*4 chia hết cho x3
=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)
=> x3*4-1 chia hết cho x2+x+1
=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)
=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)
a)
Xét x=0 => A = 1 không là số nguyên tố
Xét x=1 => A= 3 là số nguyên tố (chọn)
Xét x>1
Có A = x14+ x13 + 1 = x14 - x2 + x13 - x + x2 + x + 1
A = x2(x12-1) + x(x12-1) + x2+x+1
A = (x2+x)(x3*4-1) + x2 + x + 1
Có x3*4 chia hết cho x3
=> x3*4-1 chia hết cho x3 - 1 = (x-1)(x2+x+1)
=> x3*4-1 chia hết cho x2+x+1
=>A chia hết cho x2+x+1 mà x2+x+1 >0 (do x>1)
=> A là hợp số với mọi x > 1 (do A chia hết cho x2+x+1)
Vậy x=1 để...
Ta có: \(x^4+2^{4n+2}=\left(x^2\right)^2+\left(2^{2n+1}\right)^2=\left(x^2\right)^2+2.x^2.2^{2n+1}+\left(2^{2n+1}\right)^2-2.x^2.2^{2n+1}\)
\(=\left(x^2+2^{2n+1}\right)^2-4.2^{2n}.x^2=\left(x^2+2^{2n+1}\right)^2-\left(2.2^n.x\right)^2=\left(x^2+2^{2n+1}\right)^2-\left(2^{n+1}.x\right)^2\)
\(=\left(x^2-2^{n+1}.x+2^{2n+1}\right)\left(x^2+2^{n+1}.x+2^{2n+1}\right)\)
Để A là số nguyên tố thì \(\orbr{\begin{cases}x^2-2^{n+1}.x+2^{2n+1}=1\\x^2+2^{n+1}.x+2^{2n+1}=1\end{cases}}\)
Do x, n là số tự nhiên nên \(x^2+2^{n+1}.x+2^{2n+1}>2>1\)
Vậy thì \(x^2-2^{n+1}.x+2^{2n+1}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\Leftrightarrow\hept{\begin{cases}n=0\\\left(x-1\right)^2=0\end{cases}}\)
Vậy \(\hept{\begin{cases}n=0\\x=1\end{cases}}\)