Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3\cdot x-15=x+35\)
\(\Rightarrow3x-x=35+15\)
\(\Rightarrow 2x=50\)
\(\Rightarrow x = 50:2\)
\(\Rightarrow x= 25\)
\(b,(8x-16)(x-5)=0\)
\(+, TH1: 8x-16=0\)
\(\Rightarrow8x=16\)
\(\Rightarrow x = 16:8\)
\(\Rightarrow x=2\)
\(+,TH2: x-5=0\)
\(\Rightarrow x =5\)
\(c,x(x+1)=2+4+6+8+10+...+2500\) \(^{\left(1\right)}\)
Đặt \(A=2+4+6+8+10+...+2500\)
Số các số hạng của \(A\) là: \(\left(2500-2\right):2+1=1250\left(số\right)\)
Tổng \(A\) bằng: \(\left(2500+2\right)\cdot1250:2=1563750\)
Thay \(A=1563750\) vào \(^{\left(1\right)}\), ta được:
\(x\left(x+1\right)=1563750\)
\(\Rightarrow x\left(x+1\right)=1250\cdot1251\)
\(\Rightarrow x =1250\)
#\(Toru\)
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
1 + 3 + 5 + 7 + 9 + ....+ ( 2X - 1) = 225
xét dãy số 1, 3, 5, 7, 9 ,...... ( 2X - 1)
ta thấy dãy số trên là dãy số cách đều với khoảng cách là 2.
số số hạng của dãy số trên là:
(2X - `1 - 1 ) : 2 + 1 = X
vậy 1 + 3 + 5 + 7 + 9 + .... + ( 2X - 1) = (2X - 1 + 1)X : 2 = 225
x2 = 225
x = 15
vậy X = 15
gọi A = {1;3;5;...;2x+1 / x thuộc N}
=> Số số hạng của A là:
(2x + 1 - 1) : 2 = x.
=> (1 + 2x + 1)x : 2 = 224
<=> 2(x+1)x:2=224
<=> x(x+1)=224
Mặt khác: x và x+1 là 2 số tự nhiên liên tiếp và tích của chúng chỉ tận cùng = 0;2;6
=> o tồn tại stn x thỏa mãn đề bài.
Vậy x thuộc tập rỗng
số số hạng là :
( 2500 - 2 ) : 2 + 1 = 1250 ( số )
Tổng dãy trên là :
( 2500 + 2 ) x 1250 : 2 = 1563750
Đ/S : 1563750
Bài làm
Ta có : Gọi (2x+1) cần tìm là a vơi a là số tự nhiên khác 0
Viết lại dãy tính 1+3+5+7+9+....+(2x +1) = 1+3+5+...+a = 2500
Số số hạng của dãy tính trên là :(a-1):2+1 = (a+1):2
Tổng của dãy tính trên là :
(a+1) : 2 x (a+1):2 = 2500
<=> (a+1):2 x (a+1):2 = 50 x50
Rút gọn biểu thức: (a+1):2 x (a+1):2 = 50 x50 = (a+1) : 2 = 50
Ta có (a+1) : 2 = 50
a + 1 = 50 x2
a +1 = 100
a = 100 - 1
a = 99
Thay a là (2x+1) ta có : 2x + 1 = 99
2x = 99-1
2x = 98
x = 98:2
x = 49
Vậy x = 49