Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a \(\left(a\in N\right)\)
Do a chia 17 dư 5, chia 19 dư 12
=> a = 17.m + 5 = 19.n + 12 (m;n \(\in\) N*)
=> 17.m = 19.n + 7
=> 17.m = 17.n + 2.n + 7
=> 17.m - 17.n = 2.n + 7
=> 17.(m - n) = 2.n + 7
\(\Rightarrow2n+7⋮17\)
Do a nhỏ nhất nên n nhỏ nhất => 2n + 7 nhỏ nhất mà 2n + 7 là số lẻ
=> 2n + 7 = 17
=> 2n = 17 - 7 = 10
=> n = 10 : 2 = 5
=> a = 19.5 + 12 = 107
Vậy số nhỏ nhất cần tìm là 107
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 ; a = 17m + 5
;a chia 19 dư 12 a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
a + 216 = 323
a = 323 - 216
Vậy a = 107
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 ; a = 17m + 5
a chia 19 dư 12 a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
#Chucbanhoctot#
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
mk đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng:
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
Gọi a là số tự nhiên cần tìm.
a
chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
x:19(dư 12) x=19n+12(1) (n là số tự nhiên)
x=19n+12 = 17n+(2n+12) mà x:17 dư 5 2n+7 chia hết cho 17
n=5+17k(2) (k là số tự nhiên)
Thay (2) vào (1) x=19(5+17k)+12=323k+107
Trả lời: x=323k +107 (cho k =0,1,2,3,...) x=107 ;430;753;1076
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Mình đưa ra cách giải đơn giản theo phương pháp sau để bạn áp dụng:
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)
letienluc 216, 221, 228 ở đâu vậy