Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tôi đoán mò ra 132 nhưng làm thế nao ra đc nó giúp tớ nhé cam on cac ban
Gọi số tự nhiên N cần tìm có dạng \(\overline{abcdefg}\). Gọi tổng các chữ số là A
Vì N ko có 2 chữ số nào giống nhau nên:
1+0+2+3+4+5+6\(\le\)A\(\le\)9+7+8+6+5+4+3 hay 21\(\le\)A\(\le\)42
Mà A chia hết cho 7 => A thuộc {21, 28, 35, 42}
Trước tiên xét A =21, Sắp xếp các số a, b, c, d, e, f với các số 0, 1,2, 3, 4, 5,6 thành các số tự nhiên
Theo đề bài N là số tự nhiên nhỏ nhất ta có số đàu tiên 1023456 thử lại thì thấy 1023456 chia hết cho 7
Vì thế ta ko cần xét các trường hợp khác nữa.
Đáp án số tự nhiên N là 1023456
Lời giải:
Gọi số cần tìm là $A$. Tổng các chữ số của $A$ là $S(A)$.
Vì $A+S(A)=2004$ nên $A$ nhỏ hơn $2004$. Do đó, $A$ nhiều nhất 4 chữ số.
Nếu A có 1 chữ số thì $2A=2004\Rightarrow A=1002$ (vô lý)
Nếu A có 2 chữ số thì $A+S(A)$ lớn nhất bằng $99+9+9=117<2004$ (loại)
Nếu A có 3 chữ số thì $A+S(A)$ lớn nhất bằng $999+9+9+9=1026<2004$ (loại)
Nếu A có 4 chữ số. Gọi $A=\overline{abcd}$.
Ta có: $\overline{abcd}+a+b+c+d=2004$
$\Leftrightarrow 1001a+101b+11c+2d=2004$
$\Rightarrow 1001a\leq 2004\Rightarrow a\leq 2$
Xét các TH sau:
TH1: $a=1$ thì $101b+11c+2d=1003$
$\Rightarrow 101b=1003-11c-2d\geq 1003-11.9-2.9=886$
$\Rightarrow b\geq 9$
$\Rightarrow b=9$.
$11c+2d=94$
$11c=94-2d\geq 94-2.9=76\Rightarrow c\geq 7$
Mà $c$ chẵn nên $c=8$. Kéo theo $d=3$
TH2: $a=2$ thì $101b+11c+2d=2$
$\Rightarrow b=0; c=0; d=1$
Vậy số cần tìm là $1983$ hoặc $2001$
Lời giải:
Gọi số cần tìm là AA. Tổng các chữ số của AA là S(A)S(A).
Vì A+S(A)=2004A+S(A)=2004 nên AA nhỏ hơn 20042004. Do đó, AA nhiều nhất 4 chữ số.
Nếu A có 1 chữ số thì 2A=2004⇒A=10022A=2004⇒A=1002 (vô lý)
Nếu A có 2 chữ số thì A+S(A)A+S(A) lớn nhất bằng 99+9+9=117<200499+9+9=117<2004 (loại)
Nếu A có 3 chữ số thì A+S(A)A+S(A) lớn nhất bằng 999+9+9+9=1026<2004999+9+9+9=1026<2004 (loại)
Nếu A có 4 chữ số. Gọi A=¯¯¯¯¯¯¯¯¯¯abcdA=abcd¯.
Ta có: ¯¯¯¯¯¯¯¯¯¯abcd+a+b+c+d=2004abcd¯+a+b+c+d=2004
⇔1001a+101b+11c+2d=2004⇔1001a+101b+11c+2d=2004
⇒1001a≤2004⇒a≤2⇒1001a≤2004⇒a≤2
Xét các TH sau:
TH1: a=1a=1 thì 101b+11c+2d=1003101b+11c+2d=1003
⇒101b=1003−11c−2d≥1003−11.9−2.9=886⇒101b=1003−11c−2d≥1003−11.9−2.9=886
⇒b≥9⇒b≥9
⇒b=9⇒b=9.
11c+2d=9411c+2d=94
11c=94−2d≥94−2.9=76⇒c≥711c=94−2d≥94−2.9=76⇒c≥7
Mà cc chẵn nên c=8c=8. Kéo theo d=3d=3
TH2: a=2a=2 thì 101b+11c+2d=2101b+11c+2d=2
⇒b=0;c=0;d=1⇒b=0;c=0;d=1
Vậy số cần tìm là 19831983 hoặc 2001
Gọi số cần tìm là abc ( a; b; c là chữ số ; a khác 0)
abc = 100a + 10b + c = (98a + 7b) + (a+ b + c) + (a + 2b)
Theo bài cho abc chia hết cho 7 và a + b + c = 14
Vì 14 chia hết cho 7; 98a + 7b chia hết cho 7 nên a + 2b chia hết cho 7
Mà a + 2b < 10 + 2.10 = 30 => a+ 2b có thể bằng 7; 14; 21; 28
+) Nếu a+ 2b = 7 => a = 1; b = 3 hoặc a = 3 ; b = 2 ; a = 5 ; b = 1; a = 7 ; b = 0 tương ứng c = 10 ; c = 9; c = 8; c = 7
Vì c là chữ số nên loại c = 10
=> abc = 329 hoặc 518; 707
+) Nếu a + 2b = 14 => a + b + b = 14 mà a + b + c = 14 => b = c
a + 2b = 14 => a chẵn mà b là chữ số => a = 2; b = c = 6; a = 4; b = c = 5; a = 6; b = c = 4; a = 8 thì b = c = 3
=> abc = 266; 455; 644; 833
+) Nếu a+ 2b = 21 => a lẻ ; b là chữ số
=> a = 3; b = 9; c = 2; hoặc a = 5; b = 8; c = 1 ; a = 7 ; b = 7; c = 0
=> abc = 392; 581; 770
+) Nếu a+ 2b = 28 => a chẵn ; b là chữ số
=> không có a; b; c thỏa mãn
Vậy............
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Nhớ k nha~