K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2014

Từ đề bài ta có thể suy ra n+5 chia hết cho 11, 17, 19 (vì 6+5 =11, 12+5=17, 14+5=19)

vậy n+5 sẽ là bội chung nhỏ nhất của 11, 17, 19

=>n+5 = 11.17.19 = 3553 => x = 3548

16 tháng 12 2014

Vì n chia cho 11 dư 6                   NHÌN XUỐNG DÒNG CUỐI RỒI HẴNG LÀM BÀI BẠN NHÉ

nên n=11q+6

suy  n+5=11q+11 chia hết cho 11(1)

lại có:n chia cho 17 dư 12

nên n=17q+12

suy ra n+5=17q+17 chia hết cho 17(2)

Từ (1) và (2) suy ra n+5 thuộc BC(11;17)

Ta có BCNN(11;17)=11.17=187

Vì n+5 thuộc BC(11;17) nên n+5 thuộc B(187)

                                  suy ra n+5 chia hết cho 187

                                  suy ra n chia cho 187 dư 182

Vậy n chia cho 187 dư 182

Bạn nhớ thay các chữ như suy ra,chia hết cho,thuộc bằng ccác kí hiệu nhé

24 tháng 6 2017

Gọi số cần tìm là a.Theo đề, ta có:

a:8 dư 5, a:10 dư 7 \(\Rightarrow\) a+3 \(⋮\) cho 5,7( a nhỏ nhất)

\(\Rightarrow\) a+3\(\in\)ƯCLN (5,7) \(\Rightarrow\) a+3=35 \(\Rightarrow\) a=32

24 tháng 6 2017

Số đó là \(37\)

24 tháng 6 2017

số 317 chia 8 dư 5, chia 10 dư 7

24 tháng 6 2017

là số 317 ạn nhé

11 tháng 1 2018

Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.

BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.

Do đó x = 60n - 2 (n = 1, 2, 3, ...).

Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13.

Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.

Vậy số tự nhiên đó là 598

11 tháng 1 2018

\(\text{Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.}\)

BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.

Do đó x = 60n - 2 (n = 1, 2, 3, ...).

Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13.

Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.

Vậy số tự nhiên đó là 598

23 tháng 12 2015

  Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 
Tôi đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng: 
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3. 
Giả sử x < y < z 
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho 
a + B(z) + r3 chia hết cho x, y, z 
Khi đó a + B(z) + r3 là BC(x, y, z)

Tick nha 

18 tháng 12 2016

Gọi số cần tìm là a 
Giả sử a chia cho 5 được b dư 3 ta có 
a = 5b + 3 
2a = 10b + 6 = 10b + 5 + 1 
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1) 
giả sử a chia cho 7 được c dư 4 ta có 
a = 7c + 4 
2a = 14c + 8 = 14c + 7 + 1 
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2) 
giả sử a chia cho 9 được d dư 5 ta có 
a = 9a + 5 
2a = 18d + 10 = 18d + 9 + 1 
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3) 
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315 
suy ra 2a – 1 = 315 
2a = 316 
a = 158 
vậy số cần tìm là 158