Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt $A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
Có:
$A+n=510$
$2^{101}-2+n=510$
$n=510+2-2^{101}=512-2^{101}$
2.
$A=7+(7^2+7^3)+(7^4+7^5)+....+(7^{20}+7^{21})$
$=7+7^2(1+7)+7^4(1+7)+...+7^{20}(1+7)$
$=7+(1+7)(7^2+7^4+....+7^{20})$
$=7+8(7^2+7^4+...+7^{20)$
$\Rightarrow A$ chia 8 dư 7.
a) 21.22.23...2100
= 21+2+3+...+100
= 2(1+100).100:2
= 2101.50
= 25050
b) 715.716...730
= 715+16+...+30
= 7(15+30).16:2
= 745.8
= 7360
A=2^1+2+3+...+100
A=2^[(1+99)+(2+98)+(3+97)+...+100]
A=2^(100+100+100+...+100+50)
A=2^(100.49+50)
A=2^(4900+50)
A=2^4950
a=1.25452273648412*10^1490
a)
\(3^4.3^n:9=3^7\)
\(\Rightarrow3^4.3^n=3^7.9\)
\(\Leftrightarrow3^4.3^n=3^7.3^2\)
\(\Rightarrow3^4.3^n=3^9\)
\(\Rightarrow3^n=3^9:3^4\)
\(\Rightarrow3^n=3^5\)
\(\Rightarrow n=5\)
Vậy \(n=5\)
d)
\(2^n:4=16\)
\(\Leftrightarrow2^n:2^2=2^4\)
\(\Rightarrow2^n=2^4.2^2\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
Vậy \(n=6\)
A = 1 + 2 + 22 + 23 + 24 + ... + 2n
2A=2(1 + 2 + 22 + 23 + 24 + ... + 2n)
2A=2+22+...+2n+1
2A-A=(2+22+...+2n+1)-(1+2+22+...+2n)
A=2n+1-1
B = 7 + 71 + 72 + 73 + 74 + .... + 7n+1
7B=7( 7 + 71 + 72 + 73 + 74 + .... + 7n+1)
7B=72+72+...+7n+2
7B-B=(72+72+...+7n+2)-(7+71+...+7n+1)
6B=7n+2-7-71
B=(7n+2-14)/4
\(a,3^2\cdot3^4\cdot3^n=3^{12}\)
\(\Rightarrow3^{6+n}=3^{12}\)
\(\Rightarrow6+n=12\)
\(\Rightarrow n=6\)
\(b,2^n:4=16\)
\(\Rightarrow2^n:2^2=2^4\)
\(\Rightarrow2^{n-2}=2^4\)
\(\Rightarrow n-2=4\)
\(\Rightarrow n=6\)
\(c,6\cdot2^n+3\cdot2^n=9\cdot2^9\)
\(\Rightarrow2^n\left(6+3\right)=9\cdot2^9\)
\(\Rightarrow2^n\cdot9=9\cdot2^9\)
\(\Rightarrow2^n=2^9\)
\(\Rightarrow n=9\)
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
\(a,2^{n-1}=16\\ =>2^{n-1}=2^4\\ =>n-1=4\\ =>n=4+1\\ =>n=5\\ b,3^{21}:3^7:3\\ =3^{21-7-1}\\ =3^{14-1}\\ =3^{13}\)