K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

tong 2 so la 1365 . tim 2 so biet giua chung co 30 so le

ca c ban giai ho minh nhe cam on

7 tháng 7 2018

hieu 2 so ,so be , so lon the la xong co gang len ban tot

1 tháng 11 2015

1.

a) p = 1

b) p = 1 

c) p = 1 

3.

là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489

1 tháng 11 2015

đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.

1 tháng 11 2015

Bài 2 : c)

+Nếu p = 2 ⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)

⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.

Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp : 

 - Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !

30 tháng 5 2018

Bài 1: ba số tự nhiên lẻ liên tiếp đều là số nguyên tố là 3;5;7

30 tháng 5 2018

Bài 1 :

Gọi 3 số đó là p ; p + 2 ; p + 4

+ Nếu p = 2 thì p + 2 = 2 + 2 = 4 là hợp số

+ Nếu p = 3 thì p + 2 = 3 + 2 = 5 ; p + 4 = 3 + 4 = 7 đều là số ng tố

Với p là số nguyên tố lớn hơn 3  thì p chỉ có dạng 3k + 1 hoặc 3k + 2

+ Nếu p = 3k + 2 thì p + 4 là hợp số ( loại )

+ Nếu p = 3k + 1 thì p + 2 là hợp số ( loại )

Vậy ba số ng tố đó là : 3 ; 5 ; 7

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

Để $p=(n-2)(n^2+n-5)$ là số nguyên tố thì bản thân 1 trong 2 thừa số $n-2, n^2+n-5$ là số nguyên tố và số còn lại bằng 1.

TH1: $n-2=1\Rightarrow n=3$. Khi đó: $p=7$ là số nguyên tố (thỏa mãn) 

TH2: $n^2+n-5=1\Rightarrow n^2+n-6=0\Rightarrow (n-2)(n+3)=0$

$\Rightarrow n=2$ 

$\Rightarrow p=0$ không là snt (loại) 

Vậy $n=3$

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

28 tháng 10 2019

b1,n+5\vdots n+1

\Rightarrow n+1+4\vdots n+1

\Rightarrow 4\vdots n+1 ( Vì n+1\vdots n+1 )

\Rightarrow n+1\in Ư(4) Ư(4)

Mà : Ư(4) = \left \{ 1; 2; 4 \right \}

*TH1 :

n+1=1

\Rightarrow n=1-1

\Rightarrow n=0

* TH2:

n+1=2

\Rightarrow n=2-1

\Rightarrow n=1

* TH3:

n+1=4

\Rightarrow n=4-1

\Rightarrow n=3

Vậy : n \in \left \{ 0;1;3 \right \}

28 tháng 10 2019

Ta có :

abba=1000a+100b+10b+a

=1001a+110b

=11.(91a+10b)

Số nào nhân với 11 cũng chia hết cho 11.

đpcm

15 tháng 1 2022

3 + 2, 1 + 6, 3 + 8, 7 + 12, 9 + 14