K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

a.

Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)

Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn

$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)

Vậy $n=0$

b. $13n$ là snt khi $n<2$

Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt

Nếu $n=1$ thì $13n=13$ là snt (tm)

28 tháng 10 2021

cảm ơn bn

 

7 tháng 8 2017

1,

a/ n2 + 12n vay n co the = 2;3;5;7;11;...

=> nhung so nguyen to co 1 chu so vay n=2;3;5;7

b/ 3n + 6 vay n co the = 2;3;5;7;11;....

=> nhung so nguyen to + vao sao cho 6 ko qua 1 chu so vay n=2;3

21 tháng 9 2023

Xét 2 trường hợp:

TH1: n = 0

5ⁿ + 10 = 5⁰ + 10 = 11 là số nguyên tố

TH2: n ≠ 0

Ta có:

5ⁿ ⋮ 5

10 ⋮ 5

⇒ (5ⁿ + 10) ⋮ 5

⇒ 5ⁿ + 10 là hợp số

Vậy n = 0 thì 5ⁿ + 10 là số nguyên tố

21 tháng 9 2023

Nếu đề bài là:

   5n+10 \(\in\) P 

⇔ 5n+10 = 5

⇒ n + 10 = 1

⇒ n = -9 (loại)

\(\in\) \(\varnothing\)

Nếu đề bài là:

    5n + 10 \(\in\) P

   với n = 0 ta có 5n + 10 = 11 (thỏa mãn)

   Với n ≥ 1 ta có 5n + 10 = \(\overline{..5}\) + 10 = \(\overline{...5}\) (là hợp số loại)

Vậy n = 0

     

 

 

 

5 tháng 8 2021

Bài 2

Xét k=0 thì 31k=0(loại)

Xét k=1 thì 31k=31(chọn)

Xét k>1 thì 31k có 2 ước trở lên(loại)

Vậy k=1

5 tháng 8 2021

k=1

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới