Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)
Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn
$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)
Vậy $n=0$
b. $13n$ là snt khi $n<2$
Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt
Nếu $n=1$ thì $13n=13$ là snt (tm)
1,
a/ n2 + 12n vay n co the = 2;3;5;7;11;...
=> nhung so nguyen to co 1 chu so vay n=2;3;5;7
b/ 3n + 6 vay n co the = 2;3;5;7;11;....
=> nhung so nguyen to + vao sao cho 6 ko qua 1 chu so vay n=2;3
Xét 2 trường hợp:
TH1: n = 0
5ⁿ + 10 = 5⁰ + 10 = 11 là số nguyên tố
TH2: n ≠ 0
Ta có:
5ⁿ ⋮ 5
10 ⋮ 5
⇒ (5ⁿ + 10) ⋮ 5
⇒ 5ⁿ + 10 là hợp số
Vậy n = 0 thì 5ⁿ + 10 là số nguyên tố
Nếu đề bài là:
5n+10 \(\in\) P
⇔ 5n+10 = 5
⇒ n + 10 = 1
⇒ n = -9 (loại)
n \(\in\) \(\varnothing\)
Nếu đề bài là:
5n + 10 \(\in\) P
với n = 0 ta có 5n + 10 = 11 (thỏa mãn)
Với n ≥ 1 ta có 5n + 10 = \(\overline{..5}\) + 10 = \(\overline{...5}\) (là hợp số loại)
Vậy n = 0
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Ko có số nào