Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n+7=n+n+9-2=(n+9)+(n-2)
Vì n-2 chia hết cho n-2 nên n+9 chia hết cho n-2
n+9=(n-2)+11
Vì n-2 chia hết cho n-2 nên 11 chia hết cho n-2
=>Ư(11)={1,11}
+ Nếu n-2=1 thì n=1+2=3
+ Nếu n-2=11 thì n=11+2=13
Vậy n E {3,13}
b) n2+3n+4=nxn+3n+4=n(n+3)+4
Vì n(n+3) chia hết cho n+3 nên 4 chia hết cho n+3
=>Ư(4)={1,2,4}
+Nếu n+3=1 thì n=1-3(không xảy ra vì n E N)
+Nếu n+3=2 thì n=2-3(không xảy ra vì n E N)
+Nếu n+3=4 thì n=4-3=1
Vậy n=1
Vì một số khi chia cho 4 có thể dư 0;1;2;3 nên theo nguyên lí Đi rích lê thì trong 4 số tự nhiên liên tiếp có ít nhất một số chia hết cho 4, do đó tích trên chia hết cho 4, mà 4 chia hết cho 2 nên tích trên cũng chia hết cho2.
Tương tự với 3 nhé
+) CHC ( chia hết cho ) 2 :
Vì n ; n+1 ; n+2 và n+3 là 4 số liên tiếp
=> có 2 số chẵn
=> CHC 2 ( đpcm )
n ^ 2 + 3n + 4 chia het n + 3
nn + 3n + 4 chia het n + 3
(n + 3). n + 4 chia het n + 3
Vi (n + 3). n chia het n + 3 (vi co thua so n + 3 trong h (n+3). n )
=> 4 chia het cho n + 3
=> 1 chia het cho n
=> n = 1; -1
Chúng ta chỉ cần vẽ hình ngôi sao
Như thế đấy(mình vẽ hơi xấu)
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
Lời giải:
$n^3+3n+1\vdots n+1$
$\Rightarrow (n^3+1)+3n\vdots n+1$
$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$
$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn)
$\Rightarrow n\in \left\{0; 2\right\}$
Dấu : là dấu chia hết nhé:
1. n^3 +2n + 4 : n + 3 => n^3 + 3n^2 - 3n^2 + 2n + 4 : n + 3
=> n^2(n + 3) - 3n^2 + 2n + 4 : n + 3 => - 3n^2 + 2n + 4 : n + 3 ( do n^2(n+3) : n + 3)
=> -3n^2 - 9n + 9n + 2n + 4 : n+3 => - 3n(n+3) + 11n + 4 : n + 3 => 11n + 33 - 33 + 4 : n + 3
=> 11(n + 3) - 29 : n + 3 => -29 : n+ 3 => n + 3 thuộc ư(-29) => n + 3 thuộc {-29, -1, 1, 29 } => n thuộc {-32, -4, -2, 26}
2. n^2 + 3n + 4 : n + 3 => n(n+3) + 4 : n+ 3 => 4: n+ 3 => n+ 3 thuộc ư(4) => n + 3 thuộc {-4, -2, -1, 1, 2, 4}
=>n thuộc {-7, -5, -4, -2, -1, 1}