K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

a) Theo đầu bài ta có:
\(\orbr{\begin{cases}\frac{n}{n+1}=\frac{n\left(n+4\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}\\\frac{n+1}{n+4}=\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\end{cases}}\)
Nếu \(n=0\Rightarrow2n=0< 1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}< \frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}< \frac{n+1}{n+4}\)
Nếu \(n\ge1\Rightarrow2n\ge2>1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}>\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}>\frac{n+1}{n+4}\)

14 tháng 12 2021

\(\Rightarrow n-1+5⋮n-1\\ \Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n=6\left(n>2\right)\)

1 tháng 8 2015

Trần Lê Thành Trung

1 tháng 8 2015

Số 0 thì phải 

DD
15 tháng 1 2021

Với \(n\ge5\)

\(1!+2!+3!+4!+5!+...+n!\equiv\left(1!+2!+3!+4!\right)\left(mod10\right)\equiv3\left(mod10\right)\)

Vì \(k!=1.2.3.....k=\left(2.5\right).1.3.4.6.....k\)(Với \(k\ge5\))

mà số chính phương không thể có tận cùng là \(3\)nên loại. 

Tính trực tiếp với các trường hợp \(n=1,2,3,4\)ta được \(n=1\)và \(n=3\)thỏa mãn. 

22 tháng 9 2023

giúp mik đi 

xin đấy

25 tháng 9 2023

app như cc

hỏi ko ai trả lời

25 tháng 8 2017

n là số 1 vì nếu n là các số khác ví như 5-1=4 rồi 4:5 thì không được.Còn 1 thì 1-1=0 rồi 0:1=0 thì đúng.

Mong bạn học tốt. Nhớ k mik nha!

                                                                                                               

30 tháng 12 2015

n+5 chia hết cho n+1

=> n+1+4 chia hết cho n+1

mà n+1 chia hết cho n+1

=> 4 chia hết cho n+1

=> n+1 \(\in\)Ư(4)={-4; -2; -1; 1; 2; 4}, mà n là stn

=> n \(\in\){0; 1; 3}

30 tháng 12 2015

Mik tưởng bài này lớp 6 chứ