\(\left(n-2\right)\left(n^2+n-1\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

n= 4,3

Tick nha 

2 tháng 12 2018

\(\left(n^2+2n-6\right)⋮\left(n-4\right)\)

\(\Rightarrow n^2-4n+6n-24+18⋮\left(n-4\right)\)

\(\Rightarrow n\left(n-4\right)+6\left(n-4\right)+18⋮\left(n-4\right)\Rightarrow18⋮\left(n-4\right)\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)

Mà n là STN nên tìm được

\(n\in\left\{1;2;3;5;6;7;10;13;22\right\}\)

2 tháng 9 2018

a) (2n-1)4 : (2n-1) = 27

(2n-1)3 = 27  =33

=> 2n - 1= 3

=> 2n = 4

n = 2

phần b,c làm tương tự nha bn

2 tháng 9 2018

d) (21+n) : 9 = 95:94

(2n+1) : 9 = 9

2n + 1 = 81

2n = 80

n = 40

28 tháng 10 2016

\(abc=\left(n^2-1\right)-\left(n-2\right)^2\)

\(\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)

\(99a-99c=4n-5\)

\(99\left(a-c\right)=4n-5\)

Ta có : 99(a-c) chia hết cho 99 nên (4n-5) chia hết cho 99 (1)

* Mặt khác thì : \(abc=n^2-1\)

\(=>n^2=abc+1\)

=> 101 lớn hơn hoặc bằng \(n^2\) bé hơn 1000

=> 100 < 101 < \(n^2\) <1000<1024

=> \(10^2< n^2< 32^2\)

=> 10 < n < 32

=> 40 < 4n < 128

=> 35 < 4n-5< 123 (2)

Từ (1)(2) => 4n - 5 = 99

=> 4n = 104

=> n = 26

Vậy \(abc=n^2-1=26^2-1=675\)

Bài 1:

Ta xét 3 trường hợp :

TH1:

Nếu \(n=3k\)( Với \(k\in N\)) thì \(n.2^n⋮3\)

\(\Rightarrow n.2^n+1\) không chia hết cho \(3\)

\(\Rightarrow\)Loại

TH2:

Nếu \(n=3k+1\) ( Với \(k\in N\)) thì \(n.2^n+1=\left(3k+2\right).2^{3k+1}+1\)

\(=3k.2^{3k+1}+2^{3k+1}+1\)

\(=3k.2^{3k+1}+2.8^k+1\)

Do đó : \(n.2^n+1⋮3\Leftrightarrow\left(2.8^k+1\right)⋮3\)

Vì \(8\equiv-1\) ( mod 3 ) nên \(8^k\equiv\left(-1\right)\) ( mod 3)

Suy ra : \(2.8^k+1⋮3\Leftrightarrow2.\left(-1\right)^k+1\equiv0\) ( mod 3 )

\(\Leftrightarrow k\) chẵn \(\Leftrightarrow k=2m\) ( Với \(m\in N\)

Do đó : \(n=6m+1\), với \(m\in N\)

TH3:

Nếu \(n=3k+2\) ( với \(k\in N\)) thì \(n.2^n+1=\left(3k+2\right).2^{3k+2}+1\)

\(=3k.2^{3k+2}+2.2^{3k+2}=3k.2^{3k+2}+8^{k+1}+1\)

Do đó : \(\left(n.2^n+1\right)⋮3\Leftrightarrow\left(8^{k+1}+1\right)⋮3\)

Vì \(8\equiv-1\)( mod 3 ) nên \(8^{k+1}\equiv\left(-1\right)^{k+1}\)( mod 3) 

Suy ra : \(\left(8^{k+1}+1\right)⋮3\Leftrightarrow\left(-1\right)^{k+1}+1\equiv0\)( mod 3)

\(\Leftrightarrow k+1\)lẻ \(\Leftrightarrow k\)chẵn \(\Leftrightarrow k=2m\)( Với \(m\in N\))

Do đó :\(n=6m+2\), với \(m\in N\)

Vậy điều kiện cần tìm của m là \(m\equiv1\)( mod 6) hoặc \(m\equiv2\)( mod 6) 

Chúc bạn học tốt ( -_- )

17 tháng 1 2019

                            Giải

* Xét 3 trường hợp :

   * Trường hợp 1 : n = 3k

\(\Rightarrow\left(3k\times2^{3k}+1\right)⋮3\)

\(\Rightarrow\left(3k+8^k+1\right)⋮3\)

Vì \(8^k\)không chia hết cho 3 nên loại trường 1

   *Trường hợp 2 : n = 3k + 1

\(\Rightarrow\left[\left(3k+1\right)2^{3k+1}+1\right]⋮3\)

\(\Rightarrow\left[\left(3k+1\right)2^{3k}.2+1\right]⋮3\)

\(\Rightarrow\left[\left(3k+1\right)8^k.2+1\right]⋮3\)

\(\Rightarrow\left(24k^k+8^k\right).2+1⋮3\)

Mà 1 không chia hết cho 3 nên loại trường hợp 2

Vậy n = 3k + 2

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5