Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$
Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$
Vậy $(*)$ đúng với $n=1$
Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là:
$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$
Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là:
$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$
$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$
$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$
$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$
$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$
Do đó với $n=k+1$ thì $(*)$ đúng
$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$
a) (2n-1)4 : (2n-1) = 27
(2n-1)3 = 27 =33
=> 2n - 1= 3
=> 2n = 4
n = 2
phần b,c làm tương tự nha bn
d) (21+n) : 9 = 95:94
(2n+1) : 9 = 9
2n + 1 = 81
2n = 80
n = 40