Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Lời giải:
Đặt $n^2-n+13=t^2$ với $t$ là số tự nhiên
$\Rightarrow 4n^2-4n+52=4t^2$
$\Leftrightarrow (4n^2-4n+1)+51=4t^2$
$\Leftrightarrow (2n-1)^2+51=(2t)^2$
$\Leftrightarrow 51=(2t)^2-(2n-1)^2=(2t-2n+1)(2t+2n-1)$
Đến đây là dạng phương trình tích cơ bản rồi. Bạn lập bảng xét giá trị để tìm ra $n$ thôi.
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
Để S là số chính phương
\(\Rightarrow2^n+1=k^2\Rightarrow2^n=k^2-1=\left(k-1\right).\left(k+1\right)\)
\(\text{Vì }2^n\text{ chẵn }\Rightarrow\left(k-1\right).\left(k+1\right)\text{ chẵn }\)=> k-1 và k+1 là 2 số chẵn liên tiếp.
Dễ thấy 2n =2.2..2 ( n chữ số 2)
Mà k-1 và k+1 là tích của 2 số chẵn liên tiếp (hơn kém nhau 2 đơn vị) => k-1=2 và k+1=4 <=> k=3
=> 2n+1=32=9 => 2n=8 <=> n=3
Vậy n=3
4n + 5 là số lẻ
-> 4n + 5 = (2k + 1)2 với k là số nguyên
-> 4n + 5 = 4k2 + 4k + 1
-> 4n + 4 = 4k2 + 4k
-> 4n-1 + 1 = k2 + k
-> 4n-1 + 1 = k.(k+1)
Vế trái là số lẻ, vế phải là số chẵn nên không tồn tại k thỏa mãn bài
Suy ra không tồn tại số CP có dạng 4n + 5
Suy ra không có n thỏa mãn bài
Đặt \(N=3^n+19\)
Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1
\(\Rightarrow\)N không phải SCP
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow\left(3^k\right)^2+19=m^2\)
\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)
Pt ước số cơ bản, bạn tự hoàn thành nhé