K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

20 tháng 2 2021

a) Đặt n3 - n + 2 = k2

<=>    n(n2 -1) +2 = k2

<=>    (n-1)n(n+1) +2 = k2

Mà (n-1)n(n+1) là 3 STN liên tiếp => (n-1)n(n+1) chia hết cho 3 

Mà không có số chính phương nào chia 3 dư 2

=>  (n-1)n(n+1) +2 = k2 (vô lý)

Vậy n= {O}

24 tháng 2 2021

giả sử 3n+19=a2 (\(a\inℕ\)). dễ thấy a chẵn nên \(a^2\equiv0\)(mod 4)

=> 3\(\equiv\)1 (mod 4)

Mặt khắc vì 3\(\equiv\)-1 nên \(3^n\equiv\left(-1\right)^n\)(mod 4)

Vậy n là số chẵn hay n=2m (\(m\inℕ\)) Ta có 32m+19=a2 nên \(\left(a-3^m\right)\left(a+3^m\right)=19\Rightarrow\hept{\begin{cases}a-3^m=1\\a+3^m=19\end{cases}\Rightarrow m=2\Rightarrow n=4}\)

28 tháng 2 2018

Đặt P = n4 + n3 + n2 + n + 1 

Với n = 1 => A = 3 => loại

Với n \(\ge\)2 ta có: 

(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2 

=> 4A = (2n2 + n)2 

Vậy: n = 2 thỏa mãn đề bài

*P/s: Mik ko chắc*

26 tháng 7 2020

Đáp án sai mà mn

Thay n=2 ta có

\(n^4+n^3+n^2+n+1\)\(=31\): ko là số chính phương

2 tháng 1 2017

n = 4 

k cho minh nha

6 tháng 1 2016

ta co n^2+3n=a^2

suy ra 4n^2+12n=4a^2

suy ra (2n)^2+2.2n.3+9=4a^2+9

suy ra (2n+3)^2-(2a)2=9

suy ra (2n+3-2a)(2n+3+2a)=9

suy ra tung cai thuoc uoc cua 9

tu lam not nhe