Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Để S là số chính phương
\(\Rightarrow2^n+1=k^2\Rightarrow2^n=k^2-1=\left(k-1\right).\left(k+1\right)\)
\(\text{Vì }2^n\text{ chẵn }\Rightarrow\left(k-1\right).\left(k+1\right)\text{ chẵn }\)=> k-1 và k+1 là 2 số chẵn liên tiếp.
Dễ thấy 2n =2.2..2 ( n chữ số 2)
Mà k-1 và k+1 là tích của 2 số chẵn liên tiếp (hơn kém nhau 2 đơn vị) => k-1=2 và k+1=4 <=> k=3
=> 2n+1=32=9 => 2n=8 <=> n=3
Vậy n=3
Đặt P = n4 + n3 + n2 + n + 1
Với n = 1 => A = 3 => loại
Với n \(\ge\)2 ta có:
(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2
=> 4A = (2n2 + n)2
Vậy: n = 2 thỏa mãn đề bài
*P/s: Mik ko chắc*
a) Đặt n3 - n + 2 = k2
<=> n(n2 -1) +2 = k2
<=> (n-1)n(n+1) +2 = k2
Mà (n-1)n(n+1) là 3 STN liên tiếp => (n-1)n(n+1) chia hết cho 3
Mà không có số chính phương nào chia 3 dư 2
=> (n-1)n(n+1) +2 = k2 (vô lý)
Vậy n= {
O}