K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Vì n là số tự nhiên nên \(n+n^2< n^2+2n+1=\left(n+1\right)^2\)

Suy ra : \(\left(1+1^2\right)\left(2+2^2\right)\left(3+3^2\right)...\left(n+n^2\right)< \left(1+1\right)^2.\left(2+1\right)^2.\left(3+1\right)^2...\left(n+1\right)^2\)

                                                                                            \(=\left[1.2.3...\left(n+1\right)\right]^2=\left[\left(n+1\right)!\right]^2\)

\(\Rightarrow\left[\left(n+1\right)!\right]^2>7620042014\)

\(\Rightarrow\left(n+1\right)!>\sqrt{7620042014}>\sqrt{7619893264}=87292\)

Mà \(8!=40320< 87292\) ; \(9!=362880>87292\)

Vì n nhỏ nhất nên n + 1 nhỏ nhất. Do vậy n + 1 = 9 => n = 8

31 tháng 12 2023

n =10

26 tháng 11 2015

sorry, mới học có lớp 6

AH
Akai Haruma
Giáo viên
18 tháng 7 2023

Lời giải:

Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3) 

Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$

$\Leftrightarrow 4n^2+4n+8=4a^2+4a$

$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$

$\Leftrightarrow 2=(a-n)(a+n+1)$

Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:

$a+n+1=2; a-n=1$

$\Rightarrow n=0$ (tm)

3 tháng 8 2016

\(S\left(n\right).S\left(n+1\right)=\frac{\left(n+1\right)n.\left(n+2\right)\left(n+1\right)}{2}=87\Leftrightarrow\)
dênđây giai bình thường nhé

3 tháng 8 2016

Thấy ngay \(87=3.29=1.87\)

Ta đoán ngay được 1 số là \(n=11999;\text{ }n+1=12000\)

Còn trường hợp \(1.87\) thì chắc chắn \(n+1=10000000.........\), chỉ cần thử là thấy ngay ko có số nào thỏa