Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143 ⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: \(A=29p+5\)\(\left(p\in N\right)\)
Tương tự: \(A=31q+28\left(q\in N\right)\)
Nên: \(29p+5=31q+28\Rightarrow29\left(p-q\right)=2q+23\)
Ta thấy: \(2q+23\) là số lẻ \(\Rightarrow29\left(p-q\right)\) cũng là số lẻ\(\Rightarrow p-q=1\)
Theo giả thiết A nhỏ nhất => q nhỏ nhất\(\left(A=31q+28\right)\)
\(\Rightarrow2q=29\left(p-q\right)-23\) nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121.
Giải:
Gọi số tự nhiên cần tìm là \(a\)
Ta có:
\(a\div29\) dư \(5\)
\(\Rightarrow a=29k+5\left(k\in N\right)\)
\(a\div31\) dư \(28\)
\(\Rightarrow a=31q+28\left(q\in N\right)\)
\(\Leftrightarrow29k+5=31q+28\Rightarrow29\left(k-q\right)=2q+23\)
Lại có:
\(2q+23\) là số lẻ \(\Rightarrow29\left(k-q\right)\) là số lẻ \(\Rightarrow k-q\ge1\)
Vì \(a\) nhỏ nhất \(\Rightarrow q\) cũng phải nhỏ nhất \(\left(a=31q+28\right)\)
\(\Rightarrow2q=29\left(k-q\right)-23\) nhỏ nhất
\(\Rightarrow k-q\) nhỏ nhất
Do đó: \(k-q=1\Rightarrow2q=29-23=6\Leftrightarrow q=3\)
\(\Rightarrow a=31q+28=31.3+28=121\)
Vậy số cần tìm là \(121\)
Ta có : n chia 8 dư 7 và chia 31 dư 28, suy ra:
n chia 8 dư 7 => (n+1) ⋮ 8
n chia 31 dư 28 => (n+3) ⋮ 31
Ta có: ( n+ 1) + 64 ⋮ 8 và (n+3) + 62 ⋮ 31
=> (n+65) ⋮ 31 và 8
Mà (31,8) =1
=> (n+65) ⋮ 31.8=248
Vì n ≤999 nên (n+65) ≤ 999+65 =1064
=> \(\dfrac{n+65}{248}\text{≤4,29}\)
Để n là số tự nhiên lớn nhất thoả mãn điều kiện thì \(\dfrac{n+65}{248}\) cũng phải là số tự nhiên lớn nhất thỏa mãn => \(\dfrac{n+65}{248}\)=4
=> n = 4.248+65 = 927
Vậy số tự nhiên n cần tìm là : 927