\(n^2+n+17\)là SCP

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Đặt \(n^2+n+17=a^2\left(a\inℕ^∗\right)\)

\(\Leftrightarrow\left(2n\right)^2+4n+68=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n+1\right)^2+67=\left(2a\right)^2\)

\(\Leftrightarrow\left(2a\right)^2-\left(2n+1\right)^2=67\)

\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=67\)

Ta thấy : \(a,n\inℕ^∗\) \(\Rightarrow\hept{\begin{cases}2a-2n-1,2a+2n+1\inℕ^∗\\2a+2n+1>2a-2n-1\end{cases}}\)

Do đó ta xét TH sau :

\(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=67\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}n=32\\a=33\end{cases}}\) ( thỏa mãn )

Vậy : \(n=32\) thỏa mãn đề.

8 tháng 8 2020

Để AA là số chính phương ⇒26n+17=t2(t∈N)⇒26n+17=t2(t∈N)

⇒26n+13=t2−4⇒26n+13=t2−4

⇒13(2n+1)=(t−2)(t+2)(1)⇒13(2n+1)=(t−2)(t+2)(1)

⇒(t−2)(t+2)⋮13⇒(t−2)(t+2)⋮13⇒⎡⎣t−2⋮13t+2⋮13⇒[t−2⋮13t+2⋮13

*)Xét t+2⋮13⇒t+2=13m(m∈N)t+2⋮13⇒t+2=13m(m∈N)⇒t=13m−2⇒t=13m−2

Thay vào (1)(1)⇒13(2n+1)=13m(13m−4)⇒13(2n+1)=13m(13m−4)

⇒2n+1=m(13m−4)⇒n=13m2−4m−12⇒2n+1=m(13m−4)⇒n=13m2−4m−12

*)Xét t−2⋮13⇒t−2=13m(m∈N)t−2⋮13⇒t−2=13m(m∈N)⇒t=13m+2⇒t=13m+2

Thay vào (1)(1)⇒13(2n+1)=13m(13m+4)⇒13(2n+1)=13m(13m+4)

⇒2n+1=m(13m+4)⇒2n+1=m(13m+4)⇒n=13m2+4m−12⇒n=13m2+4m−12

Vậy.....

chúc bạn hok tốt

8 tháng 8 2020

đặt \(\hept{\begin{cases}n+5=x^2\\n+30=y^2\end{cases}\left(x;y\in N;x,y>0\right)}\)

\(\Leftrightarrow y^2-x^2=25\Leftrightarrow\left(y-x\right)\left(y+x\right)=1.25\)(vì x,y thuộc N, x,y>0)

lại có y-x<y+x nên \(\hept{\begin{cases}y+x=1\\y+x=25\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=12\end{cases}}}\)

thay vào ta được n=139 thỏa mãn

Bài 1: 

Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)

\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)

16 tháng 6 2018

\(C=n^3-n^2+n-1=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)

Ta có C là số nguyên tố nên C có ước là 1

TH1: n-1=1  => n=2 => C=5 (là số nguyên tố)

TH2: n2+1= 1 => n=0  => C= -1 (không là số nguyên tố)

Vậy với n=2 thì C là số nguyên tố

16 tháng 6 2018

Có C = \(\left(n-1\right)\left(n^2+1\right)\)

Do C nguyên tố nên hoặc (n-1)=1 hoặc (n2+1)=1

TH1: n-1=1=>n=2 => C = 5 ( chọn )

TH2: n^2+1=1 => n=0 => C = -1 (loại)

Vậy n=2

26 tháng 2 2017

n = 43 nha bạn

2 tháng 11 2016

n phai le=> n-41=2=> n=43 (duy nhat chua du) 

43+18=61 nhan

ds: n=43

11 tháng 11 2017

Đặt n^2+4n+2013 =a^2 ( a thuộc N*) => n^2+4n+4+2009=a^2 => (n+2)^2 +2009=a^2 => 2009= a^2-(n+2)^2 = (a-n-2)(a+n+2) mà a, n thuộc N, N* => a-n-2<a+n+2

(a-n-2)(a+n+2)=1.2009=7.287= 41.49

Bạn tự giải các trường hợp trên tìm được n=1002;138;2

12 tháng 11 2017

(+) a-n-2=1;a+n+2=2009

=> a+n+2-a+n+2=2009-1

=> 2n+4= 2008 => n= 1002 

Giải tương tự các trường hợp trên