K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Ta có :

2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1

=> 2n chia hết cho 8 => n chia hết cho 4

=> n+2019 chia ch 4 dư 3

mà số chính phương chia cho 4 dư 0,1

=> không tồn tại n

28 tháng 2 2020

2n + 2017 là số chính phương lẻ

=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)

=> 2n chia hết cho 8 => n chia hết cho 4

=> n + 2019 chia 4 dư 3

Mà scp chia 4 dư 0 hoặc 1

=> n + 2019 ko là scp

Vậy ko tồn tại STN n thoả mãn

15 tháng 12 2016

So tu nhien n can tim la :

n=0

14 tháng 2 2018

Đang bận nên hướng dẫn

a )Đặt  \(n^2-n+2=a^2\) (a thuôc Z)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)

Đến đây  phân tích ước của  7 ra ; tự lm đc

b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10

=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP 

23 tháng 6 2021

Giả sử \(n^2+11=a^2\) (\(a\in N\)*, a > n)

<=> (a-n)(a+n) = 11

Mà a-n < a + n

<=> \(\left\{{}\begin{matrix}a-n=1\\a+n=11\end{matrix}\right.< =>\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)

KL Vậy n = 5

23 tháng 6 2021

Ta có : \(n^2+11=m^2\)

\(\Leftrightarrow n^2-m^2=\left(n-m\right)\left(n+m\right)=-11\)

Mà n và m là các số tự nhiên .

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}n-m=11\\n+m=-1\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=-11\\n+m=1\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=1\\n+m=-11\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=-1\\n+m=11\end{matrix}\right.\end{matrix}\right.\)

- Giair lần lượt các TH ta được TH thỏa mãn là :

\(\left\{{}\begin{matrix}n-m=-1\\n+m=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=5\\m=6\end{matrix}\right.\)

Vậy n = 5 ...
 

2 tháng 8 2023

 Ta có \(P=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

  Dễ thấy nếu \(5|n\)\(n\equiv1\left[5\right]\) hay \(n\equiv4\left[5\right]\) thì \(P⋮5\). Còn nếu \(n\equiv2\left[5\right]\) hay \(n\equiv3\left[5\right]\) thì \(n^2+1⋮5\Rightarrow P⋮5\). Vậy \(P=n^5-n⋮5,\) với mọi số tự nhiên \(n\). Suy ra \(D=P+2\equiv2\left[5\right]\)

 Mà một số chính phương khi chia cho 5 chỉ có thể dư 0, 1 hoặc 4 (chứng minh điều này rất dễ, bạn chỉ cần xét lần lượt \(n\equiv0,1,2,3,4\left[5\right]\) rồi đặt \(n=5k+i\left(0\le i\le4\right)\) rồi khai triển \(\left(5k+i\right)^2=25k+10ki+i^2\equiv i^2\left[5\right]\) là xong).

 Suy ra D không thể là số chính phương, nghĩa là không tồn tại n để D là số chính phương.

3 tháng 8 2023

`5.25.2.41.8`

`= 5.50.41.8`

`= 5.400.41`

`= 2000.41`

`= 82000`

3 tháng 8 2023

Đặt \(n^2+4n+2013=p^2\left(p\in Z\right)\)

\(\Rightarrow n^2+4n+4+2009=p^2\)

\(\Rightarrow\left(n+2\right)^2+2009=p^2\)

\(\Rightarrow p^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(p+n+2\right)\left(p-n-2\right)=2009\)

mà \(p+n+2>p-n-2\left(n\in N\right)\) và 2009 là số nguyên tố

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}p+n+2=2009\\p-n-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}p+n+2=-2009\\p-n-2=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1002\\p=1005\end{matrix}\right.\)

Vậy \(n=1002\) thỏa đề bài