Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ước nguyên tố chung của 3n + 2 và 7n + 1
ta có : 3n + 2 chia hết cho d ; 7n + 1 chia hết cho d
=> 7( 3n + 2) chia hết cho d ; 3( 7n + 1) chia hết cho d
=> ( 21n + 14) - ( 21n + 3) chia hết cho d
=> 11 chia hết cho d
=> d = 11
ta có : 3n + 2 chia hết cho 11
=> 3n + 11 - 9 chia hết cho 11
=> 3n - 9 : hết cho 11
=> 3n ko chia hết cho 11
vì ( 3 ; 11) = 1
=> n ko chia hết cho 11
=> n ∈11k => p/s tối giản
a: Để A là số tự nhiên thì
6n+8+91 chia hết cho 3n+4
mà n>=0
nên \(3n+4\in\left\{7;13;91\right\}\)
=>n=1 hoặc n=3
b: Để A là phân số tối giản thì 3n+4 ko là ước của 91
=>3n+4<>7k và 3n+4<>13a
=>n<>(7k-4)/3 và n<>(13a-4)/3(k,a là các số tự nhiên)
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a) để 2n+3/4n+1 là phân số tối giản thì ta đi chứng minh 2n+3 và 4n+1 là nguyên tố cùng nhau .
=>UCLN ( 2n+3;4n+1 ) = d
ta có : 2n+1 chia hết cho d
4n+1 chia hết cho d
=> 2(2n+1) chia hết cho d
4n+1 chia hết cho d
=> 4n+2 chia hết cho d
4n+1 chia hết cho d
=> [( 4n+2)-(4n+1)] chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ucln ( 2n+3; 4n+1)=1
vì ucln ( 2n+3;4n+1)=1 nên 2n+3=1;4n+1=1
2n=1-3 4n=1-1
2n=-2 4n=0
n=-1(loại) n=0 ( chọn)
vậy để 2n+3/4n+1 là phân số tối giản thì n=0
tớ nghĩ thế ko biết có đúng ko !
nhưng nếu cảm thấy đúng thì nhớ tk cho tớ nhé
mấy phần còn lại thì các bạn cứ làm như phần a nhé !
Câu 11. Không khí nóng nhẹ hơn không khí lạnh vì
A. khối lượng riêng của không khí nóng nhỏ hơn.
B. khối lượng của không khí nóng nhỏ hơn.
C. khối lượng của không khí nóng lớn hơn.
D. khối lượng riêng của không khí nóng lớn hơn.
Gọi UCLN(n-2, 3n+7) = d (d∈N*)
=> n-2 ⋮ d => 3(n-2)⋮d => 3n-6 ⋮ d
3n+7 ⋮ d
=> (3n+7)-(3n-6)⋮d => 13⋮d
Do d ∈ N* => d = 1; 13
Xét d = 13
=> n-2⋮13 => n chia 13 dư 2
Để n-2/3n+7 tối giản thì d=1 => d≠13
Vậy n-2/3n+7 tối giản khi n không chia 13 dư 2
Đặt `d=(n-2,3n+7)` với `d\inNN^(**)`
`=>{(n-2\vdots d),(3n+7\vdots d):}`
`=>3n+7-3(n-2)\vdotsd`
`<=>13\vdots d=>d\in Ư(13)={1;13}`
Để `(n-2)/(3n+7)` là phân số tối giản `=>d\ne13`
hay `n-2\cancel(\vdots)13`
`=>n\ne13k+2(k\inNN)`
Vậy `n\ne 13k+2` với `k` là số tự nhiên tuỳ ý