K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

1;\(5n-24⋮n-2\)

\(5n-10-14⋮n-2\)

\(\Rightarrow14⋮n-2\)

\(\Rightarrow n-2\in\left(1;2;7;14\right)\)

\(\Rightarrow n\in\left(3;4;9;16\right)\)

4 tháng 12 2018

Xét 5n-24=5n-10+14=5(n-2)+14

vì n-2chia het n-2 suy ra 5(n-2)chia hết n-2

suy ra 14chia het n-2

suu ra n-2 thuoc uoc cua 14

suy ra n-2 thuộc 1;2;7;14

suy ra thuộc 3;4;9;16

các bạn làm ơn giúp mik

11 tháng 10 2018

1. n không chia hết cho 3 suy ra n = 3k +1 hoặc n = 3k +2.

- nếu n = 3k +1 thì 5n + 1 = 5(3k +1) +1 = 15k + 6 ⋮ 3.

- nếu n = 3k +2 thì 5n + 2 = 5(3k + 2) +2 = 15k + 12 ⋮ 3

2. p là số nguyên tố lớn hơn 3 nên p sẽ có dạng 6k + 1 hoặc 6k + 5.

nếu p là 6k + 1 thì p + 2 = 6k + 3 ⋮ 3, không là số nguyên tố

do đó p có dạng 6k+5, khi đó p + 1 = 6k : 6 ⋮ 6.

11 tháng 10 2018

3.

x(1-y) + 2(1-y) = 5

(x+2)(1-y) = 5

xét các trường hợp : x + 2 = 1; 1 - y = 5 và x + 2 = 5, 1 - y =1

4. ta có: n\(^2\) + 3 = (n+1)(n-1) + 4 ⋮ (n-1) khi 4 ⋮ (n-1), khi đó (n-1) \(\in\) Ư(4) .

8 tháng 11 2016

b) -Nếu p=3 => p+2 = 5 là số nguyên tố

                       p+ 4=7 là số nguyên tố

              => p= 3 (chọn)

-Nếu p > 3 mà p là số nguyên tố

   => p = 3k+1 hoặc p= 3k+2

    +) Nếu p= 3k+1=> p+2= 3k+1 +2 = 3k+3

                                     =3(k+1) chia hết cho 3( là hợp số)

                         => p=3k+1 (loại)

      +) Nếu p= 3k+2=> p+4=3k+2 +4 =3k+6 

                                          =3(k+2) chia hết cho 3(là hợp số)

                  => p=3k+2 (loại)

Vậy p= 3

1 tháng 11 2015

1.

a) p = 1

b) p = 1 

c) p = 1 

3.

là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489

1 tháng 11 2015

đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.

5 tháng 11 2023

a) 4n + 7 chia hết cho 2n + 1

⇒ 4n + 2 + 5 chia hết cho 2n + 1

⇒ 2(2n + 1) + 5 chia hết cho 2n + 1

⇒ 5 chia hết cho 2n + 1

⇒ 2n + 1 ∈ Ư(5) (ước dương)

⇒ 2n + 1 ∈ {1; 5}

⇒ n ∈ {0; 2}