K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

6 tháng 1 2016

+Ta có: 2n+1 và 3n+1 là số chính phương. 
+Áp dụng bài 7, suy ra n chia hết cho 40. Mà n là số có 2 chữ số.
=> n=40 hoặc n=80.
+Trường hợp n=80 thì loại do 2.80+1 không phải là số chính phương.
Vậy n=40 thoả mãn đề bài

31 tháng 10 2020

Giải:
Gọi 2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)

10≤n≤99⇒21≤2n+1≤199

⇒21≤a2≤199

Mà 2n + 1 lẻ

⇒2n+1=a2∈{25;49;81;121;169}

⇒n∈{12;24;40;60;84}

⇒3n+1∈{37;73;121;181;253}

Mà 3n + 1 là số chính phương

⇒3n+1=121⇒n=40

Vậy n = 40

nhớ cho k nhé (tham khảo thôi đừng chép)

3 tháng 3 2019

từ đề bài suy ra 10<=n<=99,suy ra 21<=2n+1<=199

. vì 2n+1 là số lẻ nên có các giá trị là 25,49,81,121,169 tương ứng n có các giá trị 12,24,40,60,80

mà 3n+1 có các giá trị 37,73,121,181,253,nên chỉ có 121 là chung 

suy ra:n=40

3 tháng 3 2019

Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40

19 tháng 1

Gọi 2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)

10≤n≤99⇒21≤2n+1≤199

⇒21≤a2≤199

Mà 2n + 1 lẻ

⇒2n+1=a2∈{25;49;81;121;169}

⇒n∈{12;24;40;60;84}

⇒3n+1∈{37;73;121;181;253}

Mà 3n + 1 là số chính phương

⇒3n+1=121⇒n=40

Vậy n = 40 (tham khảo nha)

 

29 tháng 2 2016

giải giùm cái

29 tháng 2 2016

10≤n≤99↔21≤2n+1≤201

2n+1 là số chính phương lẻ nên

2n+1∈{25;49;81;121;169}

↔n∈{12;24;40;60;84}

↔3n+1∈{37;73;121;181;253}

↔n=40

|t|i|c|k| cho tui zới

13 tháng 3 2021

Do 2n + 1 là số chính phương lẻ nên 2n + 1 chia cho 4 dư 1. Suy ra n chẵn.

Do đó 3n + 1 là số chính phương lẻ. Suy ra 3n + 1 chia cho 8 dư 1 nên n chia hết cho 8.

Ta có số chính phương khi chia cho 5 dư 0; 1 hoặc 4.

Do đó \(2n+1;3n+1\equiv0;1;4\left(mod5\right)\).

Mặt khác \(2n+1+3n+1=5n+2\equiv2\left(mod5\right)\).

Do đó ta phải có \(2n+1;3n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\).

Từ đó n chia hết cho 40.

Với n = 40 ta thấy thỏa mãn

Với n = 80 ta tháy không thỏa mãn.

Vậy n = 40.