K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Tham khảo nha bạn!

Đặt A = 4789655-27n3

Với 20349<n<47238 ta có 351429<4789655 - 27n<4240232

hay  351429<A3<4240232, tức là 152.034921<A<161.8563987

      Do A là số tự nhiên nên A chỉ có thể bằng một trong các số 153; 154; 155;..;160;161,

       Vì A = 4789655-27n3 nên n= 4789655-A^3 : 27

quy trình bấm như sau:

1, lưa 152 vào A

Bấm 152 shift sto A

2, Ghi vào màn hình A = A +1 :( 4789655 - A^3) :27

Bấm alpha A alpha = alpha A + 1 alpha :( 4789655  - alpha A shift x^3) : 27

Bấm = cho đến khi A = 162, chú ý sau mỗi lần bấm = xem phép chia có hết không nếu hết thì thỏa manc yêu cầu đêf bài

Kết quả:158

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

20 tháng 4 2020

Gọi 2 số tự nhiên lần lượt là x vày

    \(\hept{\begin{cases}x+y=47\\x-y=23\end{cases}}\)   \(\Leftrightarrow\) \(\hept{\begin{cases}x=35\\y=12\end{cases}}\)      

vậy 2 số tự nhiên lá 35 và 12

27 tháng 10 2019

Có \(B=n^4-27n^2+121\)

\(=n^4+22n^2+121-49n^2\)

\(=\left(n^2+11\right)^2-\left(7n\right)^2\)

\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)

Vì \(n\in N\)nên \(n^2+7n+11>11\)

Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)

Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)

Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)

Vậy nên \(n^2-7n+11=1\)

\(\Leftrightarrow n^2-7n+10=0\)

\(\Leftrightarrow n^2-2n-5n+10=0\)

\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)

Vậy.............

21 tháng 1 2017

Đề sai à bạn, mình tính ở máy tính số tự nhiên nào cũng được mà???

21 tháng 1 2017

thay n=1 thì A k nguyên

26 tháng 10 2020

\(B=n^4-27n^2+121\)

\(B=n^4+22n^2+121-49n^2\)

\(B=\left(n^2+11\right)^2-49n^2\)

\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)

Vì n là số tự nhiên => \(n^2+11+7n>11\)

Để B là số nguyên tố

=> \(n^2-7n+11=1\)

\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)