Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì chia cho 3 dư 2 ; cho 5 dư 4 và 7 dư 6 nên số đó thêm 1 đơn vị sẽ chia hết cho 3 ; 5 và 7
Mà số lớn nhất chia hết cho 3 ; 5 và 7 là 945
Vậy số cần tìm là:
945 − 1 = 944
ĐS: 944
Các số chia cho 3 dư 2 có 1 chữ số là:
5 ; 8 ; 11; 14 ; 17 ; 20 ; 23 ; 25 ; 28 ; 31; 34
Các số chia cho 5 dư 4 có 1 chữ số là:
9 ; 14 ; 19 ; 24 ; 29 ; 34 ; 39 ; 44
Các số chia cho 7 dư 6 có 1 chữ số là:
13 ; 20 ; 27 ; ; 34 ; 41 ; 48 ; 55 ; 62
Trong các số trên chỉ có số 34 mới đủ điều kiện
Vậy số cần tìm là 34 nhé
-b=8a+7=31b+28
=>(n-7)/8=a
b=(n-28)/31
a-4b=(-n+679)/248=(-n+183)/248+2
vi a,4bnguyen nen a-4b nguyen
=>(-n+183)/248 nguyen
=>-n+183=248d=>n183-248d
.......................................
đến đây thì chắc bạn làm được rồi n=927
1/Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Tìm dạng chung của các số tự nhiên n sao cho n chia cho 30 dư 7 chia cho 125 dư 4