K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

Gọi số cần tìm là \(\overline{abc}\) (a,b,c \(\in N\), 10 > a,b,c \(\ge0\))

TH1: \(\overline{ab}=4\overline{bc}\)

=> \(10a+b=40b+4c\)

=> \(10a=39b+4c\)

Mà b\(\ge1,c\ge0\) => \(39b+4c\ge39\)

=> 10a \(\ge39\)

=> a \(\ge4\)

Do \(\overline{ab}\) là số chính phương

=> \(\overline{ab}\in\left\{49;64;81\right\}\)

- Với \(\overline{ab}=49\) => \(\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\) => 4c = -311 (loại)

- Với \(\overline{ab}=64=>\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\) => 4c = - 96 (loại)

- Với \(\overline{ab}=81=>\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\) => 4c = 41 => c = \(\dfrac{41}{4}\) (loại)

TH2: \(4\overline{ab}=\overline{bc}\)

=> 40a + 4b = 10b + c

=> 40a = 6b + c

Mà \(b\le9;c\le9\)

=> 6b + c \(\le63\)

=> 40a \(\le63\)

=> a \(\le1\)

=> a = 1

Mà \(\overline{ab}\) là số chính phương

=>  \(\overline{ab}\)  = 16

=> b = 6

=> c = 4

Vậy số cần tìm là 164