Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a0bc ( a khác 0).
xóa chữ số 0 ta được số abc
Theo đề bài: a0bc = abc x 9
=> 1000a + bc = (100a + bc).9
=> 1000a + bc = 900a + 9. bc
=> 100a = 8. bc
=> 25. a = 2. bc
2. bc là số chẵn => 25. a chẵn => a là chữ số chẵn . do vậy. a = 2;4;6;...
a = 2 => bc = 25 ( Chọn)
a = 4 => bc = 50 ( chọn)
a = 6 => bc = 75 ( Chọn)
a = 8 => bc = 100 ( Loại)
Vậy số cân tìm có thể là: 2025; 4050; 6075;
abc là số phải tìm
___
abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số
__
bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp:
(1) Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2
Vậy a = 2, b = 5, c = 0
Số phải tìm là 250
(2) Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là:
250, 125, 375
Gọi số cần tìm là abc (a khác 0; a,b,c là các chữ số)
Ta có:
bc.9 = abc
=> bc.9 = 100a + bc
=> bc.9 - bc = 100a
=> bc.8 = 100a
=> bc.2 = 25a (1)
⇒bc.2⋮25⇒bc.2⋮25
Mà (2;25)=1 ⇒bc⋮25⇒bc⋮25
⇒bc∈{25;50;75}⇒bc∈{25;50;75}
+ Với bc = 25, thay vào (1) => a = 25.2:25 = 2
+ Với bc = 50, thay vào (1) => a = 50.2:25 = 4
+ Với bc = 75, thay vào (1) => a = 75.2:25 = 6
Vậy số cần tìm là 225; 450; 675
Gọi số cần tìm là \(\overline{abc}\).
Ta có: \(\overline{abc}=9\times\overline{bc}\)
\(\Leftrightarrow\overline{a00}+\overline{bc}=9\times\overline{bc}\)
\(\Leftrightarrow a\times100=8\times\overline{bc}\)
\(\Leftrightarrow a\times25=2\times\overline{bc}\)
suy ra \(\overline{bc}\in\left\{25,50,75\right\}\)
Xét từng trường hợp, có các số thỏa mãn ycbt là: \(225,450,675\).
Ta có ab x 9 = abc
=> ab x 9 = ab x 10 + c
=> ab = c
=> không tồn tại số đó vì c là chữ số.
xóa đi 9 ở hàng trăm là bớt đi 9 trăm. 9 trăm là 8/9 của số tự nhiên kia.
Gạch đầu các số có chữ cho mk nhé
Gọi số tự nhiên có 4 chữ số là a0bc(a khác 0,b,c thuộc N và nhỏ hon 10)
nếu xóa chữ số 0 đó thì ta có số mới là:abc
Theo bài ra ta có:
abcx9=a0bc
(a x100+bc)x9=ax1000+bc
ax900+9xbc=ax1000+bc
9xbc-bc=ax1000-ax900
8xbc=ax100
2xbc=25xa
Vì số đã cho có 4 chữ số
=>2xbc nhỏ hơn hoặc bằng 199
=>25x a nhỏ hơn hoặc bằng 199
=>a nhỏ hơn hoặc bằng 3
=>a thuộc tập hợp{1,2,3} vì a khác 0
Nếu a=1 thì 25xa=2xbc
25x1=2xbc
25=2xbc(loại vì bc phải là số có 2 chữ số)
Nếu a=2 thì 25xa=2xbc
25x2=2xbc
=> bc=25
=> b=2,c=5
Nếu a=3 thì 25xa=2xbc
25x3=2xbc
75=2xbc(loại như a=1)
=>a=2,b=2,c=5
=>Số cần tìm là 2025
Vậy....
Gọi số cần tìm là a0cd,
xóa số 0 thì ta được acd
Ta có: acd . 9 = a0cd
=> (100a + cd) . 9 = 1000a + cd
=> 900a + 9.cd = 1000a + cd
=> 8 . cd = 100a
=> 8.cd bé hơn hoặc bằng 900
=> 100.a bé hơn hoặc bằng 900
100.a có thể bằng 100; 200; 300;...; 900
Xét các trường hợp:
+) 100 : 8 = 12 (dư 4) (loại)
+) 200:8 = 25; 2025 : 9 = 225 (chọn)
... (mình không ghi vì hơi dài bạn tự viết nhé)
+) 900 : 8 (dư 4) (loại)
Vậy số đó có thể là các số 2025; 4050; 6075
Gọi số cần tìm là a0bc ( a khác 0 )
Xóa chữ số 0 ta được số abc
Theo bài ra ta có : a0bc = abc x 9
=> 1000a + bc = ( 100a + bc ) x 9
=> 1000a + bc = 900a + 9 x bc
=> 100a = 8 x bc
=> 25 x a = 2 x bc
bc là số chẵn => 25 x a chẵn => a là chữ số chẵn . do vậy a = 2 , 4, ,6 , ......
a = 2 => bc = 25 ( chọn )
a = 4 => bc = 50( chọn )
a = 6 => bc = 75 ( chọn )
a = 8 => bc = 100 ( chọn ) Vậy số cần tìm là : 2025 , 4050 , 6075 , .
a) Gọi số cần tìm là : abc
abc = 9.bc ⇒ 100a + bc = 9.abc
Ta có : 8.bc = 100a ⇒2.bc = 25a
Như vậy : bc chai hết cho 25.
Vậy ta có 3 đáp số : 225; 450; 675.
a) Gọi số cần tìm là : abc
abc = 9.bc \(\Rightarrow\) 100a + bc = 9.abc
Ta có : 8.bc = 100a \(\Rightarrow\)2.bc = 25a
Như vậy : bc chai hết cho 25.
Vậy ta có 3 đáp số : 225; 450; 675.
b) Nếu xóa đi chữ số tận cùng thì : Số sẽ giảm từ 10 lần trở lên.
Nếu xóa chữ số hàng chục thì : Có 4 đáp số là : 135; 225; 315; 405.
Nếu xóa chữ số hàng trem8 thì : Có 4 đáp số là : 225; 450; 675.