K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

\(\sqrt[3]{\overline{xyz}}=x+y+z\)

\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)

Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)

\(\Rightarrow\overline{xyz}-m⋮9\)

Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)

\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)

\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)

Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9

Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)

\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)

Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)

Thử lại ta thấy không thỏa mãn,loại

Nếu \(m-1⋮9\left(KTM\right)\)

Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)

Thử lại ta thấy thỏa mãn

Vậy số đó là 512

6 tháng 10 2019

3.(x+y)^2+y^2+3y+9/4=25/4

(x+y)^2+(y+3/2)^2=25/4

6 tháng 10 2019

2

Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)

\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9

\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)

Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)

\(\Rightarrow a=2\)

\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)

\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)

Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)

<=>27xyz=27(x+y+z)+54

\(\Rightarrow\left(x+y+z\right)^3\ge27\left(x+y+z\right)+54\Rightarrow x+y+z\le6\)

\(4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le12\left(x+y+z\right)=9\left(x+y+z\right)+3\left(x+y+z\right)\le9\left(x+y+z\right)+18=9\left(x+y+z+2\right)\)

\(\Rightarrow4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le9xyz\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\left(Q.E.D\right)\)

29 tháng 9 2017

Từ giả thiết ta đặt ra: \(x+y+z=xyz\Rightarrow xy+yz+zx\ge\sqrt{3}a+b+c\ge9\) * 

Ta lại có: \(x^2+5\ge5\sqrt{xyz}\)theo BĐT Cauchy 

Từ đó BĐT \(\Leftrightarrow x^2+y^2+z^2+27\le4xy+yz+zx\Leftrightarrow a+b+c+27\le6\)

Đặt: \(\hept{\begin{cases}p=x+y+z\\q=xy+yz+zx\\r=xyz\end{cases}}\)

Thì ta có: \(p=r\)và cần chứng minh 

\(6q\ge p^2+27\Leftrightarrow6pr\ge p^3+27p\)

Theo BĐT Schur thì: \(r\ge\frac{4pq-p^3}{9}\)

Do đó: \(BĐT\Leftrightarrow\frac{8}{3}q^2\ge\frac{3}{2}p^2+27\)

BĐT cuối cùng đúng theo Đk *

P/s: Tham khảo nhé