Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> ﴾x ‐ 1﴿ chia hết 2
﴾x ‐ 2﴿ chia hết 3
﴾x ‐ 3﴿ chia hết 4
﴾x ‐ 4﴿ chia hết 5
﴾x ‐ 5﴿ chia hết 6
﴾x ‐ 6﴿ chia hết
=> ﴾x + 1﴿ chia hết cho cả 2, 3, 4, 5, 6, 7
=> ﴾x + 1﴿ là BC﴾2;3;4;5;6;7﴿
Mà x nhỏ nhất
=>﴾ x+ 1﴿ là BCNN﴾2;3;4;5;6;7﴿ = 5.12.7 = 420 => x = 419
chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143 ⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
Gọi số cần tìm là a :
Khi đó a + 1 chia hết cho 5
a + 1 chia hết cho 7
a + 1 chia hết cho 10
Nên a + 1 thuộc BCNN (5;7;10) = 70
=> a + 1 = 70
=> a = 69
Vậy số cần tìm là 69
Ta có : a : 5 dư 3 \(\Rightarrow\left(a-3\right)⋮5\Rightarrow\left(2a-6\right)⋮5\)
a : 7 dư 4 \(\Rightarrow\left(a-4\right)⋮7\) \(\Rightarrow\left(2a-8\right)⋮7\)
\(\Rightarrow\left(2a-1\right)⋮5;7\)
Mà a là số tự nhiên nhỏ nhất nên 2a-1 =BCNN(5;7)=35
\(\Rightarrow2a-1=35\)
\(\Rightarrow2a=36\Rightarrow a=18\)
Vậy số tự nhiên a nhỏ nhất cần tìm là 18
gọi số đó là a
a : 5 dư 3 và chia 7 dư 4
=> \(\hept{\begin{cases}a-3⋮5\\a-4⋮7\end{cases}}\)
=>\(\hept{\begin{cases}a-3-5-5-5⋮5\\a-4-7-7⋮7\end{cases}}\)
=> \(\hept{\begin{cases}a-18⋮5\\a-18⋮7\end{cases}}\)
=> a - 18 thuộc B(5;7)={35;70;...}
mà a phải nhỏ nhất ( theo đề bài ) => a-18 phải nhỏ nhất = 35 => a = 35+18 = 53
Vậy a= 53
cho mk đi