Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5
=>n+5 chia hết cho 11;17;29
Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)
Vì 11;17;29 nguyên tố cùng nhau
=>n+5= BCNN(11;17;29)=11x17x29=5423
=>n=5423-5=5418
b) Gọi số tự nhiên cần tìm là x
x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5
=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)
Vì 13;19 nguyên tố cùng nhau
=> x+5=BCNN(13;19)=13x19=247
=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}
Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482
x=1482-5
x=1477
câu b phải là 7 chứ bạn
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Gọi so can tim la x
Theo bài ra ta có
x = 7a + 5 va x= 13b + 4
Ta lại có x + 9 = 7a + 14 = 13b + 13
-> x + 9 chia hết cho 7 và 13
-> x + 9 chia hết cho 7.13 = 91
-> x + 9 = 91m -> x = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy x chia 91 dư 82
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
Gọi số phải tìm là A
Theo đề bài:
A chia 8 dư 6 => A+2 chia hêt cho 8
A chia 12 dư 10 => A+2 chia hết cho 12
A chia cho 15 dư 13 => A+2 chia hết cho 15
=> A+2 là bội số chung của { 8; 12; 15}.
Bội số chung của {8;12;15} là 120; 240; 360; 480; 600....
=> A có thể là những số sau: 118; 238; 358; 478; 598; ....
Do A chia hết cho 23 nên A = 598 (thỏa mãn số tự nhiên nhỏ nhất cần tìm).
Vậy số tự nhiên nhỏ nhất cần tìm là 598.
Gọi số phải tìm là A
Theo đề bài:
A chia 8 dư 6 => A+2 chia hêt cho 8 (khi trình bày thì cháu viết 3 cái chấm thẳng hàng nhé)
A chia 12 dư 10 => A+2 chia hết cho 12
A chia cho 15 dư 13 => A+2 chia hết cho 15
=> A+2 là bội số chung của {8; 12; 15}.
Bội số chung của {8;12;15} là (ngày xưa đi thi học sinh giỏi là em phải trình bày cả phương pháp tìm bội số chung ở đoạn này, mà giờ chắc các cháu được phép lược rồi cho lời giải ngắn gọn, cụ hỏi cháu xem, nếu vẫn phải trình bày thì trình bày ra): 120; 240; 360; 480; 600....
=> A có thể là những số sau: 118; 238; 358; 478; 598; ....
Do A chia hết cho 23 nên A = 598 (thỏa mãn số tự nhiên nhỏ nhất cần tìm).
Vậy số tự nhiên nhỏ nhất cần tìm là 598.
+ Nếu thêm 3 vào số cần tìm thì được số mới chia hết cho 8; 10; 15; 20
=> số cần tìm là BSC(8; 10; 15; 20) -3
+ Do số cần tìm nhỏ nhất nên số cần tìm là bội số chung nhỏ nhất của BSCNN(8; 10; 15; 20) - 3 với 41
=> BSCNN(8; 10; 15; 20)=120 => BSCNN(8; 10; 10; 15; 20)-3=120-3=117
=> Số cần tìm là BSCNN(117;41)=117.41=4797
Gọi số cần tìm là x
Theo đề, ta có: \(x-6\in B\left(8\right);x-10\in B\left(12\right);x-13\in B\left(15\right);x\in B\left(23\right)\)
mà x nhỏ nhất
nên x=598
gọi stn cần tìm là x(x thuộc N)
x chia 8 dư 6=>x+2 chia hết cho 8
x chia 12 dư 10=>x+2 chia hết cho 12
x chia 15 dư 13=>x+2 chia hết cho 15
=>x+2 thuộc B(8,12,15)
8=2^3
12=2^2.3
15=3.5
=>BCNN(8,12,15)=2^3 . 3 . 5 =120
=>B(8,12,15)=0;120;240;360;480;600;720;...}
=>x+2=(8,12,15)=0;120;240;360;480;600;720;...}
=>x={-2;118;238;358;478;598;718;...}
mà x thuộc N;x chia hết cho 23
mà 598 chia hết cho 23
mà ta cần tìm x nhỏ nhất
=>x=598
Vậy stn nhỏ nhất cần tìm là 598
Gọi số càn tìm là a
a chia cho 8 dư 6 => a + 2 chia hết cho 8
a chia cho 12 dư 10 => a+2 chia hết cho 12
a chia cho 15 dư 13 => a+2 chia hết cho 15
=>a + 2\(\in\)BC(8,12,15)
Ta có:
8=23
12=22.3
15=3.5
BCNN(8,12,15) = 23.3.5 = 120
BC(8,12,15) = B(120) = {0;120;240;360;480;600;...}
=>a+2 \(\in\){0;120;240;360;480;600;...}
=>a \(\in\){118;238;358;478;598;...}
Mà 598 chia hết cho 13
=> a = 598
Gọi số phải tìm là A
Theo đề bài:
A chia 8 dư 6 => A+2 chia hêt cho 8 (khi trình bày thì cháu viết 3 cái chấm thẳng hàng nhé)
A chia 12 dư 10 => A+2 chia hết cho 12
A chia cho 15 dư 13 => A+2 chia hết cho 15
=> A+2 là bội số chung của {8; 12; 15}.
Bội số chung của {8;12;15} là: 120; 240; 360; 480; 600....
=> A có thể là những số sau: 118; 238; 358; 478; 598; ....
Do A chia hết cho 23 nên A = 598 (thỏa mãn số tự nhiên nhỏ nhất cần tìm).
Vậy số tự nhiên nhỏ nhất cần tìm là 598.
A chia 12 dư 5 => A+7 chia hêt cho 12 (khi trình bày thì cháu viết 3 cái chấm thẳng hàng nhé)
A chia 15 dư 8 => A+7 chia hết cho 15
A chia cho 32 dư 25 => A+7 chia hết cho 32
=> A+7 là bội số chung của {12; 15; 32}.
Bội chung nhỏ nhất của {12;15;32} là: 480
=> A +7=480 => A = 433