Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Gọi số tự nhiên đó là \(n\).
Vì \(n\)chia cho \(6\)dư \(5\)và chia hết cho \(3\)mà
ta có \(6⋮3\)nên số dư của số đó cho \(3\)là số dư của \(5\)cho \(3\)là \(2\)(mâu thuẫn).
Vậy không tồn tại số tự nhiên thỏa mãn ycbt.
a chia 3 dư 2 => (a + 1) chia hết cho 3 => (a + 1 + 6) chia hết cho 3 => (a + 7) chia hết cho 3
a chia 5 dư 3 => (a + 2) chia hết cho 5 => (a + 2 + 5)chia hết cho 5 => (a + 7)chia hết cho 5
Mà ƯCLN(3,5) = 1 => (a + 7) chia hết cho 3 . 5 = 15
Mà a nhỏ nhất nên a +7 nhỏ nhất => a + 7 là 15 => a = 8