K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2014

a) 2a+1 . 3b = 12a

3b = 12a : 2a+1

3b = 1/2 (12/2)a

3b = 1/2 . 6a

3b = 1/2 . 2a . 3a

3b-a  = 2a - 1

=> b - a = 0 và a - 1 = 0 (vì nếu hai số mũ khác 0 thì vế trái chia hết cho 3 và không chia hết cho 2, trong khi vế phải chia hết cho 2 mà không chia hết cho 3, mâu thuẫn)

=> b = a = 1

b) 10a : 5b = 20b 

(2.5)a : 5b  = (22.5)b

2a . 5a : 5b = 22b .5b 

2a - 2b = 52b - a

Lý luận tương tự câu a 

=> a - 2b = 2b - a = 0

=> a = 2b

22 tháng 7 2017

+) Nếu a>0 khi đó VT>225 (với mọi b là số tự nhiên) => MT

=>a=0

=> (3b+1)(b+1)=225

=> tìm đc b

22 tháng 7 2017

bạn cho mình hỏi b=bao nhieu

22 tháng 1 2021

Ta thấy 225 là số lẻ nên 100a + 3b + 1 và 2a + 10a + b cũng là các số lẻ.

Do 100a + 3b + 1 là số lẻ mà 100a là số chẵn nên 3b là số chẵn tức b là só chẵn.

Kết hợp với 2a + 10a + b là số lẻ ta có 2a là số lẻ

\(\Leftrightarrow2^a=1\Leftrightarrow a=0\).

Khi đó: \(\left(3b+1\right)\left(b+1\right)=225\)

\(\Leftrightarrow\left(b-8\right)\left(3b+28\right)=0\Leftrightarrow b=8\) (Do b là số tự nhiên).

Vậy a = 0; b = 8.

 

3 tháng 11 2019

 x,y = ( 6,5);(10,30

3 tháng 11 2019

b,

b.a=30=1.30=2.15=3.10=5.6

=>(b,a)={(1,30),(2,15),(3,10),(5,6)}

c,

(x+1)(y+2)=10=1.10=2.5

TH1:x+1=1;y+2=10=>x=0,y=8

tuong tu=>(x,y)={(0,8),(1,3),(4,0)}

13 tháng 12 2022

=>3b(4a-3)+20a-15=2820

=>(4a-3)(3b+5)=2820

=>a chia 4 dư 1, b chia 3 dư 2

Do đó: \(\left(a,b\right)\in\varnothing\)

 

27 tháng 6 2018

chi oi

2 tháng 9 2023

Bài 2 :

a) \(2^a+154=5^b\left(a;b\inℕ\right)\)

-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)

\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)

\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)

\(\Rightarrow\left(a;b\right)\in\varnothing\)

b) \(10^a+168=b^2\left(a;b\inℕ\right)\)

Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)

\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)

mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))

\(\Rightarrow\left(a;b\right)\in\varnothing\)

2 tháng 9 2023

Bài 3 :

a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)

Ta thấy :

\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))

\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)

mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))

\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)

mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)

\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)

\(\Rightarrow M\) không thể là số chính phương.

b) \(N=2004^{2004k}+2003\)

Ta thấy :

\(2004k=4.501k⋮4\)

mà \(2004\) có chữ số tận cùng là \(4\)

\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)

\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)

\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)

5 tháng 8 2017

b)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)

\(=\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}:\frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(=\frac{1}{x-1}=\frac{1}{2009}\Leftrightarrow x+1=2009\)

\(\Rightarrow x=2009-1=2008\)

6 tháng 8 2017

Bạn Phúc Trần Tấn bạn có biết làm phần a ko?Giúp mk với ạ!Mai mk cần rùi