Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left|2x-1,6\right|-2,3=1,4\)
\(\Leftrightarrow\left|2x-1,6\right|=3,7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1,6=3,7\\2x-1,6=-3,7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5,3\\2x=-2,1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2,65\\x=-1,05\end{matrix}\right.\)
Vậy ....
b/ \(5,4-\left|3x-1,2\right|=5,5\)
\(\Leftrightarrow\left|3x-1,2\right|=-0,1\)
Mà \(\left|3x-1,2\right|\ge0\)
\(\Leftrightarrow x\in\varnothing\)
c/ \(\left|x+1,3\right|+\left|x+2,4\right|=4x\)
Mà \(\left\{{}\begin{matrix}\left|x+1,3\right|\ge0\\\left|x+2,4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow4x\ge0\)
\(\Leftrightarrow x+1,3+x+2,4=4x\)
\(\Leftrightarrow2x+3,7=4x\)
\(\Leftrightarrow3,7=4x-2x\)
\(\Leftrightarrow2x=3,7\)
\(\Leftrightarrow x=1,85\)
Vậy ....
d/ \(\left|x-1,2\right|+\left|2,5-x\right|=0\)
Mà \(\left\{{}\begin{matrix}\left|x-1,2\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-1,2\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,2=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1,2\\x=2,5\end{matrix}\right.\) (loại)
Vậy ..
a, \(\left|2x-1,6\right|-2,3=1,4\)
\(\Rightarrow\left|2x-1,6\right|=3,7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1,6=3,7\\2x-1,6=-3,7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2,65\\x=-1,05\end{matrix}\right.\)
b,\(5,4-\left|3x-1,2\right|=5,5\)
\(\Rightarrow\left|3x-1,2\right|=-0,1\) (vô lí)
Vì \(\left|x\right|\ge0\) mà \(\left|3x-1,2\right|< 0\)
Vậy, không có giá trị của x thỏa mãn.
c, \(\left|x+1,3\right|+\left|x+2,4\right|=4x\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+1,3\right|\ge0\\\left|x+2,4\right|\ge0\end{matrix}\right.\Leftrightarrow4x\ge0\)
\(\Leftrightarrow x+1,3+x+2,4=4x\)
\(\Leftrightarrow x+x+1,3+2,4=4x\)
\(\Leftrightarrow2x+3,7=4x\)
\(\Leftrightarrow2x-4x=-3,7\)
\(\Leftrightarrow-2x=-3,7\)
\(\Leftrightarrow x=\dfrac{3,7}{2}\)
d, \(\left|x-1,2\right|+\left|2,5-x\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-1,2\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-1,2\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1,2=0\\2,5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1,2\\x=2,5\end{matrix}\right.\)
Bài 1:a/ 1.6-Ix-0.2I=0
Có 2 trường hợp:
TH1: x-0.2=1.6
=> x=1.6+0.2=1.8
TH2: x-0.2=-1.6
=> x=-1.4
b/ Có 2 trường hợp:
TH1:x-1.5=0=>x=1.5
TH2: 2.5-x=0=> x=2.5
Bài 2: a/ Vì Ix-3.5I\(\ge0\)
=> Amax=0.5-0=0.5 khi x=3.5
b/ Vì -I1.4-xI \(\le0\)
Nên Bmax=0-2=-2 khi x=1.4
1,
a, \(\left(x-\dfrac{1}{7}\right)^4=\left(x-\dfrac{1}{7}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{7}\right)^4-\left(x-\dfrac{1}{7}\right)^2=0\)
\(\Leftrightarrow\left[\left(x-\dfrac{1}{7}\right)^2+x-\dfrac{1}{7}\right]\left[\left(x-\dfrac{1}{7}\right)^2-x+\dfrac{1}{7}\right]=0\)
\(\Leftrightarrow\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x+x-\dfrac{1}{7}\right]\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x-x+\dfrac{1}{7}\right]=0\)
\(\Leftrightarrow\left(x^2+\dfrac{5}{7}x-\dfrac{6}{49}\right)\left(x^2-\dfrac{9}{7}x+\dfrac{8}{49}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+\dfrac{5}{7}x-\dfrac{6}{49}=0\\x^2-\dfrac{9}{7}x+\dfrac{8}{49}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=\dfrac{8}{7}\end{matrix}\right.\)
Vậy...
b, \(\left|x+6,4\right|+\left|x+2,5\right|+\left|x+8,1\right|=4x\)
\(\Leftrightarrow x+6,4+x+2,5+x+8,1=4x\) với mọi x
\(\Leftrightarrow x+x+x-4x=-8,1-2,5-6,4\)
\(\Leftrightarrow-x=-17\)
\(\Leftrightarrow x=17\)
Vậy...
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
(4x - 3) - (x + 5) = 3(10 - x)
<=> 4x - 3 - x - 5 = 30 - 3x
<=> 4x -x + 3x = 3 + 5 + 30
<=> 6x = 38
<=> x = 19/3
\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(4x-3-x-5=30-3x\)
\(3x-8=30-3x\)
\(3x+3x=30+8\)
\(6x=38\)
\(x=\frac{19}{3}\)
x.3+12=4.x
trừ mỗi vế cho x.3, ta có:
12=1x
Vậy x = 12
câu này vào toán lopws 5 mới đúng chứ