Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
a, \(\left(x-\dfrac{1}{7}\right)^4=\left(x-\dfrac{1}{7}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{7}\right)^4-\left(x-\dfrac{1}{7}\right)^2=0\)
\(\Leftrightarrow\left[\left(x-\dfrac{1}{7}\right)^2+x-\dfrac{1}{7}\right]\left[\left(x-\dfrac{1}{7}\right)^2-x+\dfrac{1}{7}\right]=0\)
\(\Leftrightarrow\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x+x-\dfrac{1}{7}\right]\left[x^2+\dfrac{1}{49}-\dfrac{2}{7}x-x+\dfrac{1}{7}\right]=0\)
\(\Leftrightarrow\left(x^2+\dfrac{5}{7}x-\dfrac{6}{49}\right)\left(x^2-\dfrac{9}{7}x+\dfrac{8}{49}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+\dfrac{5}{7}x-\dfrac{6}{49}=0\\x^2-\dfrac{9}{7}x+\dfrac{8}{49}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=\dfrac{8}{7}\end{matrix}\right.\)
Vậy...
b, \(\left|x+6,4\right|+\left|x+2,5\right|+\left|x+8,1\right|=4x\)
\(\Leftrightarrow x+6,4+x+2,5+x+8,1=4x\) với mọi x
\(\Leftrightarrow x+x+x-4x=-8,1-2,5-6,4\)
\(\Leftrightarrow-x=-17\)
\(\Leftrightarrow x=17\)
Vậy...
Bài 1:
a) \(A=-3+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
\(A=-3+\frac{1}{1+\frac{1}{\frac{4}{3}}}\)
\(A=-3+\frac{1}{1+\frac{3}{4}}\)
\(A=-3+\frac{1}{\frac{7}{4}}\)
\(A=-3+\frac{4}{7}=-\frac{17}{7}\)
1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)
\(B=\dfrac{1}{2018}\)
2)a)\(x^2-2x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2-16=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
3)\(\dfrac{a}{b}=\dfrac{d}{c}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)
Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)
4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)
\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)
\(g\left(x\right)=-x^{101}+f\left(x\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)
Tại x=0 thì f(x)-g(x)=0
Tại x=1 thì f(x)-g(x)=1
Bài 1 :
Ta có :
\(\left(x-1\right)^6=\left(x-1\right)^8\)
\(\Leftrightarrow\)\(x-1=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(1-x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........