Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.
BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.
Do đó x = 60n - 2 (n = 1, 2, 3, ...).
Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13. Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.
Số tự nhiên đó là \(n\)thì ta có: \(n+1\)chia hết cho cả \(2,3,4,5\).
suy ra \(n+1\in BC\left(2,3,4,5\right)\)
Có \(BCNN\left(2,3,4,5\right)=60\)suy ra \(n+1\in B\left(60\right)\).
- \(n+1=60\)\(\Leftrightarrow n=59⋮̸7\).
- \(n+1=120\Leftrightarrow n=119⋮7\).
Vậy giá trị nhỏ nhất của \(n\)là \(119\).
Gọi số đó là x.
Ta có: x + 2 chia hết cho 3; 4; 5; 6
=> x + 2 là BC(3, 4, 5, 6)
Vì BCNN(3, 4, 5, 6) = 60 => x + 2 = 60 . q (q \(\in\) N)
Do đó x = 60 . q - 2
Mặt khác x chia hết cho 11. => chọn q = 1; 2; 3; 4; ...
Ta thấy q = 7 thì x = 60 x 7 - 2 = 418 chia hết cho 11
Vậy số cần tìm là 418
@@