K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Ta có : \(xy-x-y-1=0\)

\(\Rightarrow\left(xy-x\right)-y-1=0\)

\(\Rightarrow x\left(y-1\right)-\left(y-1\right)-2=0\)

\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=2\)

\(\Rightarrow\left(y-1\right)\left(x-1\right)=2\)

\(\Rightarrow y-1;x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có bảng sau :

\(y-1\)\(1\)\(2\)\(-1\)\(-2\)
\(x-1\)\(2\)\(1\)\(-2\)\(-1\)
\(x\)\(3\)\(2\)\(-1\)\(0\)
\(y\)\(2\)\(3\)\(0\)\(-1\)

Vậy \(\left(x;y\right)\in\left\{\left(3;2\right),\left(2;3\right),\left(-1;0\right),\left(0;-1\right)\right\}\)  

13 tháng 12 2023

Xy-x-y-5=4 nhanh giùm mìnhĐang cần gấp

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

NV
25 tháng 3 2021

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

7 tháng 1

\(x^2-xy-2022x+2023y-2024=0\\\Leftrightarrow (x^2-2023x)-(xy-2023y)+(x-2023)-1=0\\\Leftrightarrow x(x-2023)-y(x-2023)+(x-2023)=1\\\Leftrightarrow(x-2023)(x-y+1)=1\)

Vì \(x,y\) nguyên nên \(x-2023;x-y+1\) có giá trị nguyên

mà \(\left(x-2023\right)\left(x-y+1\right)=1\)

nên ta có các trường hợp xảy ra là:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2023=1\\x-y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2023=-1\\x-y+1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=2024\left(tm\right)\\\left\{{}\begin{matrix}x=2022\\y=2024\end{matrix}\right.\left(tm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2024;2024\right);\left(2022;2024\right)\).

\(\text{#}Toru\)

27 tháng 2 2019

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

5 tháng 1 2020

Tìm cặp số nguyên (x;y) thỏa mãn x+y=xy

\(x+y=xy\)

\(\Leftrightarrow x+y-xy=0\)

\(\Leftrightarrow x-xy+y-1=-1\)

\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-1\)

\(\Leftrightarrow\left(1-y\right)\left(x-1\right)=-1\)

Từ trên ta xét 2 TH : 1 là 1 - y = 1 và x - 1 = -1 | 2 là 1 - y = -1 và x - 1 = 1

TH1:\(x-1=-1\) 

\(\Rightarrow x=0\)

     \(1-y=1\)

\(\Rightarrow y=0\)

TH2: \(x-1=1\)

\(\Rightarrow x=2\)

       \(1-y=1\)

\(\Rightarrow y=2\)

=> 2 cặp số nguyên (x;y) thỏa mãn x+y=xy là (0;0) và (2;2)