Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x=7+5=12
2: =>-29-x=-10
=>x+29=10
=>x=-19
3: =>x+7=-18
=>x=-25
4: =>x+19-11=0
=>x+8=0
=>x=-8
a, Vì : \(x\in Z\Rightarrow2x-5\in Z\)
\(y\in Z\Rightarrow y-6\in Z\)
Phân tích 19 thành tích hai số nguyên ta có :
19 = 1.9 = (-1)(-19)
Do đó : ( 2x-5 )( y -6 ) = 1.19 = (-1)(-19)
Ta có bảng sau :
2x - 5 | 1 | 19 | -1 | -19 |
y - 6 | 19 | 1 | -19 | -1 |
x | 3 | 12 | 2 | -7 |
y | 25 | 7 | -13 | 5 |
Vậy ...
b, Vì \(\left(x-3\right)\left(x+2\right)< 0\)=> x - 3 và x + 2 khác dấu
\(\Rightarrow\hept{\begin{cases}x-3< 0\\x+2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x+2< 0\end{cases}}\)
+) \(\hept{\begin{cases}x-3< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 3\\x>-2\end{cases}}\Rightarrow-2< x< 3\)
Mà : x là số nguyên \(\Rightarrow x\in\left\{-1;0;1;2\right\}\)
+) \(\hept{\begin{cases}x-3>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>3\\x< -2\end{cases}}\Rightarrow3< x< -2\) =>loại
Vậy \(x\in\left\{-1;0;1;2\right\}\)
Bài 5 :
S = 1 + 3 - 5 - 7 + 9 + 11 - ... - 397 - 399
S = 1 + (3 - 5 - 7 + 9) + (11 - 13 - 15 + 17) + ... + (387 - 389 - 391 + 393) + (395 - 397 - 399)
S = 1 + 0 + 0 + ... + 0 + (- 401)
S = 1 - 401
S = - 400
Bài 5
A= 1+3-5-7+9+11-13-15+...-397-399
A= ( 1+3-5-7)+( 9+11-13-15)+...+( 393+395-397-399)
A= -8 -8 -...-8
A = -8.50 ( từ 1 đến 399 có 200 số, chia làm 4 cặp)
A= -400
a ) 28 + x = − 59 x = − 59 − 28 x = − 87
b ) x − 4 x 2 − 25 = 0 ⇔ x − 4 = 0 x 2 − 25 = 0 ⇔ x = 4 x 2 = 25 ⇔ x = 4 x = ± 5
x + 2 = 17 ⇒ x + 2 = 17 x + 2 = − 17 ⇒ x = 15 x = − 19
d ) − 19 + 4 ( 2 − x ) = 25 − x − 19 + 8 − 4 x = 25 − x 4 x − x = − 19 + 8 − 25 3 x = − 36 = > x = − 12
a) Ta có: \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2\right\}\)
b) Ta có: x(3x+9)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3\right\}\)
TL :
\(x=1\)
HT
@@@@@@@@@@@@@@@