Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
x2 + x + 1 là bội của x - 2
⇔ x2 + x + 1 ⋮ x - 2
x2 - 4 + x - 2 + 7 ⋮ x - 2
(x2 - 2x) + ( 2x - 4) + ( x - 2) + 7 ⋮ x - 2
x( x - 2) + 2 ( x - 2) + ( x - 2) + 7 ⋮ x - 2
(x-2)( x + 2) + (x -2) + 7 ⋮ x - 2
⇔ 7 ⋮ x - 2
x - 2 \(\in\) { -7; -1; 1; 7}
Lập bảng
x- 2 | -7 | -1 | 1 | 7 |
x | -5 | 1 | 3 | 9 |
Vậy x \(\in\) { -5; 1; 3; 9}
Cách 2 : nhanh hơn nếu dùng bezout
Theo bezout ta có : F(x) = x2 + x + 1 ⋮ x - 2⇔ F(2) ⋮ x - 2
⇔ 22 + 2 + 1 ⋮ x - 2 ⇔ 7 ⋮ x - 2; ⇒ x - 2 \(\in\) { -7; -1; 1;7}
x ϵ { -5; 1; 3; 9}
\(\Leftrightarrow x^2-2x+3x-6+7⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
\(\dfrac{x^2+x+1}{x-3}=\dfrac{x\left(x-3\right)+4\left(x-3\right)+13}{x-3}\Rightarrow x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-3 | 1 | -1 | 13 | -13 |
x | 4 | 2 | 16 | -10 |
\(\dfrac{x^2+x+1}{x-2}=\dfrac{x\left(x-2\right)+3x-6+7}{x-2}=x+3+\dfrac{7}{x-2}\)
\(\Rightarrow x-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x-2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
b1
ta có : n+4 = (n+1)+3
=>n+1+3 chia hết cho n+1
vì n+1 chia hết cho n+1
=>3 chia hết cho n+1
=> n+1 chia hết cho 3
=> n+1 thuộc Ư 3 =[1;3]
=> n+1=1 n+1=3
n =1-1 n =3-1
n =0 n =2
vậy n thuộc [0;2]
\(x^2+x+1\) là bội của x-2 \(\Leftrightarrow\frac{x^2+x+1}{x-2}\in Z\)
\(\frac{x^2+x+1}{x-2}=\frac{x^2-2x+3x-6+7}{x-2}=x+3+\frac{7}{x-2}\)
h bạn dễ dàng tìm x dữa vào ước của 7 nhé
HT
Xin lỗi mn,Mn có thể giải thích rõ hơn ko . Chân thành cảm ơn